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Model: MANOVA matrices & Jacobi ensemble

Let X be A×M, A ≥ M, Y be N ×M random matrices, every entry i.i.d real,
complex, or quaternion Gaussian. The distribution of X ∗X (X ∗X + Y ∗Y )−1 is
the MANOVA ensemble.
(Almost surely) it has K = min{M,N} eigenvalues different from 0 and 1. The
distribution is the K -particle Jacobi ensemble:

∏
1≤i<j≤K

(xi − xj)
β

K∏
i=1

xp
i (1− xi )

q

for p = β
2

(A−M + 1)− 1, q = β
2

(|M − N|+ 1)− 1, and β = 1, 2, 4,
corresponding to real, complex, or quaternion entries.
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Consider a multilevel setting

Let χM be the set of infinite families of sequences x1, x2, · · · , where for each
N ≥ 1, xN is an increasing sequence with length min(N,M):

0 ≤ xN
1 < · · · < xN

min(N,M) ≤ 1

and for each N > 1, xN and xN−1 interlace:

xN
1 < xN−1

1 < xN
2 < · · · .

x1
1

x2
1 x2

2

x3
1 x3

2 x3
3

...xM−1
1

xM
1

xM+1
1

xM+2
1

xM−1
M−1

xM
M

xM+1
M

xM+2
M

· · ·· · ·· · ·
· · ·
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Corners processes

The β–Jacobi corners process, first introduced in [BG15], is a random element
of χM with distribution Pα,M,θ, given in the following way: the marginal
distribution of a single xN has density (with respect to Lebesgue measure)
proportional to

∏
1≤i<j≤min(N,M)

(xN
i − xN

j )2θ

min(N,M)∏
i=1

(xN
i )θα−1(1− xN

i )θ(|M−N|+1)−1,

and a specified conditional distribution of xN−1 given xN (see [BG15, Section
2.3] for a complete definition).
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Matrix model for multilevel ensemble

For β = 1, 2, 4 there are many ways to obtain the β-Jacobi ensemble, and
many can be extended to the multilevel setting.

Consider infinite random matrices X and Y , let XAM be the A×M top–left
corner of X , and Y NM the N ×M top–left corner of Y . Denote

MANM = (XAM)∗XAM
(

(XAM)∗XAM + (Y NM)∗Y NM
)−1

,

It was proved in [Sun16] that the joint distribution of (different from 0, 1)
eigenvalues in MAnM , n = 1, · · · ,N, for real and complex entries, is the same
as the first N rows of β-Jacobi corners process with α = A−M + 1, and
θ = β

2
, for β = 1, 2 respectively.
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Passing α,M,N → ∞

Consider level N in Pα,M,θ. Let the parameters α and M and level N depend
on a large auxiliary variable L→∞:

lim
L→∞

α

L
= α̂, lim

L→∞

N

L
= N̂, lim

L→∞

M

L
= M̂.

Then the random sequence xN
1 ≤ · · · ≤ xN

min{M,N}, or the measure

L−1∑min{M,N}
i=1 δxNi

, converges to a random function

0 1xN
1 xN

2 xN
min{M,N}· · ·

0 1
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Known asymptote results

Law of Large Numbers (classical result) for (smooth) function f , there is

lim
L→∞

L−1

min{M,N}∑
i=1

f (xN
i ) =

∫ 1

0

φ(x)f (x)dx

in probability. Here φ : [0, 1]→ R is an explicit deterministic function. (see,
e.g. [Kil08], [DP12], [BG15]). This is an analogue of Wigner semicircle law
[Wig58] (which is in Hermite ensemble).

Central Limit Theorem the sum
min{M,N}∑

i=1

f (xN
i )− E

(
f (xN

i )
)

converges to Gaussian as L→∞.
I β = 1, 2, 4: classical. see e.g. [Sze52] [For10].
I General β, first by Johansson for Hermitian matrices [Joh98].
I General β in the Jacobi case, recently by Dumitriu and Paquette [DP12].
I Multilevel setting, the joint convergence to Gaussian was proved by

Borodin and Gorin [BG15].
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Our problem: adjacent levels

A sequential construction:
∑N

n=1

(∑min{M,n}
i=1 f (xn

i )−
∑min{M,n−1}

i=1 f (xn−1
i )

)
.

x1
1

x2
1 x2

2

x3
1 x3

2 x3
3

...
xN−1
1

xN
1

xN−1
min{M,N−1}

xN
min{M,N}

· · ·· · ·
xN
2

xN−1
2

When N > M, denote xN
i = 1 for any

N < i ≤ M.
Denote Pk(xN) =

∑N
i=1(xN

i )k to be the
moments.

Theorem (LLN of moments)

The random variable Pk(xN)−Pk(xN−1) converges to a constant as L→∞,
in the sense that the variance decays in O(L−1). The constant is given by the
following contour integral:

lim
L→∞

E
(
Pk(xN)−Pk(xN−1)

)
=

1

2πi

∮ (
v

v + N̂
· v − α̂
v − α̂− M̂

)k
1

v + N̂
dv ,

where the integration contour encloses the pole at −N̂ but not α̂ + M̂, and is
positively oriented.
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Fluctuation: discrete Gaussianity

There are two CLT of fluctuation, when considering discrete levels or an
integral cross different levels, and they are in different scales: for discrete level

it is L
1
2 , for an integral it is L.

Theorem (CLT of discrete levels)

The random vector

L
1
2

(
Pki (x

Ni )−Pki (x
Ni−1)− E

(
Pki (x

Ni )−Pki (x
Ni−1)

))h
i=1

converges to centered a Gaussian random vector, whose covariance between the
ith and jth component is

−δN̂i=N̂j
· kikj
ki + kj

· θ
−1

2πi

∮
1

(v + N̂i )2

(
v

v + N̂i

· v − α̂
v − α̂− M̂

)ki+kj

dv ,

where the contour encloses −N̂i but not α̂ + M̂.
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Fluctuation: discrete Gaussianity (cont.)

In [BG15], it was shown that the random vector(
Pk′i

(xN′i )− E
(
Pk′i

(xN′i )
))h′

i=1

converge (as L→∞) to centered Gaussian whose covariance between the ith
and jth component is

θ−1

(2πi)2

∮ ∮
1

(v1 − v2)2

2∏
i=1

(
vi

vi + N̂i

· vi − α̂
vi − α̂− M̂

)ki

dvi .

Here we show that the convergence of both random vectors are joint, but they
are asymptptotically independent.
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Fluctuation: smooth Gaussianity

Theorem (CLT of integral over levels)

Let g1, · · · , gh ∈ L∞([0, 1]) continuous almost everywhere. As L→∞, the
random vector(
L

∫ 1

0

gi (y)
(
Pki (x

bLyc)−Pki (x
bLyc−1)− E

(
Pki (x

bLyc)−Pki (x
bLyc−1)

))
dy

)h

i=1

converges jointly in distribution to a centered Gaussian vector, with covariance
between the ith and jth component is given by
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Fluctuation: smooth Gaussianity (cont.)

∫∫
0≤y1<y2≤1

θ−1

(2πi)2

∮ ∮
kikj

(v1 − v2)2(v1 + y1)(v2 + y2)

×

(
gi (y1)gj(y2)

(
v1

v1 + y1
· v1 − α̂
v1 − α̂− M̂

)ki
(

v2

v2 + y2
· v2 − α̂
v2 − α̂− M̂

)kj

+gj(y1)gi (y2)

(
v1

v1 + y1
· v1 − α̂
v1 − α̂− M̂

)kj
(

v2

v2 + y2
· v2 − α̂
v2 − α̂− M̂

)ki
)
dv1dv2dy1dy2

−
∫ 1

0

θ−1

2πi

∮
gi (y)gj(y)kikj

(ki + kj)(v + y)2

(
v

v + y
· v − α̂
v − α̂− M̂

)ki+kj

dvdy ,

where in the first integral, the contours are nested: |v1| � |v2|, and enclose
−y1,−y2 but not α̂ + M̂; in the second integral, the contour encloses −y but
not α̂ + M̂.
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

Kerov’s diagram

Each interlacing sequence corresponds to a diagram:

x1 y1 x2 y2 x3 u0 y3 x4 y4 x5 y5 x6

Theorem (Convergence of diagram)

Let w xN ,xN−1

be the interlacing diagram of the sequence xN , xN−1. Then it
converges to a deterministic diagram ϕ in the sense that, in probability,

lim
L→∞

sup
u∈R

∣∣∣w xN ,xN−1

(u)− ϕ(u)
∣∣∣ = 0.
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

Convergence of measure

Consider the signed measure
∑N

i=1 δxNi
−
∑N−1

i=1 δ
xN−1
i

, as L→∞.

Theorem (LLN of the measure)

For any differentiable f : [0, 1]→ R, the random variable

N∑
i=1

f (xN
i )−

N−1∑
i=1

f (xN−1
i )

converges (in probability) to constant
∫ 1

0
f (u)τ(u)du, as L→∞. Here

τ : R→ R is defined as

τ(u) =


M̂−N̂+(N̂+M̂+α̂)(1−u)

2π(N̂+M̂+α̂)(1−u)

1√
(γ2−u)(u−γ1)

, u ∈ (γ1, γ2)

C(M̂, N̂)δ(u − 1), u ∈ (−∞, γ1]
⋃

[γ2,∞).
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

Convergence of measure (cont.)

0 1γ1 γ2 0 1γ1 γ2

δ1

M̂ > N̂ M̂ < N̂

γ1,2 =

(√
(α̂ + M̂)(α̂ + N̂)∓

√
M̂N̂

)2

(N̂ + M̂ + α̂)2
,

C(M̂, N̂) =


0, M̂ > N̂
1
2
, M̂ = N̂

1, M̂ < N̂

.

I Total measure
∫
τ = 1.

I M̂ < N̂, delta function at 1.

I τ = 0 outside (γ1, γ2)
⋃
{1}.

I ϕ′′ = 2τ .

I Not true for non-smooth f : e.g.
an indicator function of an
interval.
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

Sending θ → 0

There is a limit transition between β-Jacobi corners processes and the roots of
the Jacobi orthogonal polynomials.
Let Fp,q

n be the Jacobi orthogonal polynomials of degree n with weight
function xp(1− x)q on [0, 1]. Let jM,N,α,i be the ith root (in increasing order)

of Fα−1,|M−N|
min(M,N) , for 1 ≤ i ≤ min(M,N). We also denote jM,N,α,i = 1, for any

fixed M,N, α, and min(M,N) < i ≤ N.

Theorem ([BG15, Theorem 5.1])

Let (x1, x2, · · · ) ∈ χM be distributed as Pα,M,θ, and let jM,N,α,i be the ith root

(in increasing order) of Fα−1,|M−N|
min(M,N) , for 1 ≤ i ≤ min(M,N). Then there is

lim
θ→∞

xN
i = jM,N,α,i ,

in probability.
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Roots of Jacobi polynomials

With the transition, and our LLN above, it is easy to obtain that

Theorem (Convergence of roots)

There is an interlacing relationship for the roots:

jM,N,α,1 ≤ jM,N−1,α,1 ≤ jM,N,α,2 ≤ · · · .

Then diagram corresponding to this interlacing sequence uniformly converges
to ϕ, as L→∞.
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Recall the definition of GFF

The Gaussian Free Field with Dirichlet boundary conditions in the upper half
plane H is defined as a mean 0 (generalized) Gaussian random field G on H,
whose covariance (for any z ,w ∈ H) is

E(G(z)G(w)) = − 1

2π
ln

∣∣∣∣z − w

z − w̄

∣∣∣∣ .
Since it has a singulrity at the diagonal z = w , the value of the GFF at a point
is not defined, however, it can be well-defined as an element of a certain
functional space. In particular, the integrals of G(z) against sufficiently smooth
measures are genuine Gaussian random variables.
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

The pullback

We connect the upper half plane with the area where the β-Jacobi ensemble
lives. This was introduced in [BG15].
Let D ⊂ [0, 1]× R>0 be defined by the following inequality∣∣∣∣∣x − M̂N̂ + (M̂ + α̂)(N̂ + α̂)

(N̂ + α̂ + M̂)2

∣∣∣∣∣ ≤ 2
√

M̂N̂(M̂ + α̂)(N̂ + α̂)

(N̂ + α̂ + M̂)2
.

Let Ω : D
⋃
{∞} → H

⋃
{∞} such that the horizontal section of D at height N̂

is mapped to the half-plane part of the circle, centered at

N̂(α̂ + M̂)

N̂ − M̂

with radius √
M̂N̂(M̂ + α̂)(N̂ + α̂)∣∣∣N̂ − M̂

∣∣∣
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CLT: pullback of GFF

The pullback (cont.)

(when N̂ = M̂ the circle is replaced by the vertical line at α̂
2

), and point u ∈ H
is the image of (

u

u + N̂
· u − α̂
u − α̂− M̂

, N̂

)
.
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Identification of the limit object

...
· · ·

0 1

(u, y)

H(u, y)

For any (u, y) ∈ [0, 1]× R>0, define H(u, y) to be the number of i such that

x
byc
i is less than u.

Let K be the generalized Gaussian random field in [0, 1]× R≥0 which is 0
outside D and is equal to G ◦ Ω (i.e. the pullback of G with respect to map Ω)
inside D.

In [BG15], it was proved that the function H(u, Ly) converges to the random
field K.
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

Identification of the limit object: discrete levels

For y > 1, let W(u, y) = H(u, y)−H(u, y − 1). Then it is expected that the
function W converges to some derivative of the random field K.

Theorem (Discrete levels, “half” derivative)

As L→∞, for any integers k1, · · · , kh, and real numbers 0 < N̂1 ≤ · · · ≤ N̂h,
the distribution of the vector(

L
1
2

∫ 1

0

uki
(
W(u, LN̂i )− E

(
W(u, LN̂i )

))
du

)h

i=1

converges weakly to a joint Gaussian distribution, which is the same as the
weak limit

lim
δ→0+

δ−
1
2

(∫ 1

0

ukiK(u, N̂i + δ)du −
∫ 1

0

ukiK(u, N̂i )du

)h

i=1

.
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LLN: digram and roots of Jacobi polynomials
CLT: pullback of GFF

Identification of the limit object: discrete levels (cont.)

For any integers k1, · · · , kh and k ′1, · · · , k ′h′ , real numbers 0 < N̂1 ≤ · · · ≤ N̂h

and 0 < N̂ ′1 ≤ · · · ≤ N̂ ′h′ , the convergence of the above vector and(∫ 1

0

uk′i
(
H(u, LN̂ ′i )− E

(
H(u, LN̂ ′i )

))
du

)h′

i=1

is jointly, while the limit vectors are independent.

This is different in the case of integral cross levels.
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Identification of the limit object: integral cross levels

For any g ∈ C∞([0, 1]), with g(1) = 0, define

Zg,k =

∫ 1

0

∫ 1

0

ukg ′(y)K(u, y)dudy .

We can extend this definition to g ∈ L2([0, 1]), by a convergence argument.

Theorem (Integral cross levels)

Let k1, · · · , kh be positive integers and g1, · · · , gh ∈ L∞([0, 1]), each
continuous almost everywhere. As L→∞, the distribution of the vector(

L

∫ 1

0

∫ 1

0

uki gi (y) (W(u, Ly)− E (W(u, Ly))) dudy

)h

i=1

converges weakly to the distribution of the vector (Zgi ,ki )
h
i=1.

Lingfu Zhang Interlacing adjacent levels of β-Jacobi corners processes



Problem setup
Main results: LLM and CLT of interlacing adjacent levels

Interpretations and implications
Key techniques used

References
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CLT: pullback of GFF

Identification of the limit object: integral cross levels (cont.)

Moreover, take differentiable functions g̃1, · · · , g̃h′ ∈ L∞([0, 1]), such that
g̃i (1) = 0 and g̃ ′i ∈ L∞([0, 1]) for each 1 ≤ i ≤ h′, and positive integers
k ′1, · · · , k ′h′ . Then the distribution of the vector(∫ 1

0

∫ 1

0

−uk′i g̃ ′i (y) (H(u, Ly)− E (H(u, Ly))) dudy

)h′

i=1

converges weakly to the distribution of the vector
(
Zg̃i ,k

′
i

)h′
i=1

, as L→∞; and

the convergence of both vectors are joint.

Remark
There is no a priory reason why such an upgrade for the CLT should hold. e.g.
Erdos and Schroder[ES16] show that this is not the case for general Wigner
matrices; and in that article the limit might even fail to be Gaussian.
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Macdonald processes
Differential operators
Dimension reduction
A Gaussian type asymptote
To actual Gaussianity

Macdonald processes: the definition

Let Y be the set of partitions/Young diagrams/infinite non-increasing sequence
of non-negative integers, which are eventually zero. And let YN ⊂ Y consists of
sequences λ such that λN+1 = 0

Let ΨM be the set of all infinite families of sequences {λi}∞i=1, which satisfy

1. For N ≥ 1, λN ∈ Ymin{M,N}.

2. For N ≥ 2, the sequences λN and λN−1 interlace: λN
1 ≥ λN−1

1 ≥ λN
2 ≥ · · · .
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Macdonald processes
Differential operators
Dimension reduction
A Gaussian type asymptote
To actual Gaussianity

Macdonald processes: the definition (cont.)

The infinite ascending Macdonald process with positive parameters M ∈ Z,
{ai}∞i=1, {bi}Mi=1, 0 < ai < 1, 0 < bi < 1, is the distribution on ΨM , such that
the marginal distribution for λN is

Prob(λN = µ) =∏
1≤i≤N,1≤j≤M

∏∞
k=1(1− aibjq

k−1)∏∞
k=1(1− taibjqk−1)

Pµ(a1, · · · , aN ; q, t)Qµ(b1, · · · , bM ; q, t),

and {λN}N≥1 is a trajectory of a Markov chain with (backward) transition
probabilities

Prob(λN−1 = µ|λN = ν) = Pν/µ(aN ; q, t)
Pµ(a1, · · · , aN−1; q, t)

Pν(a1, · · · , aN ; q, t)
.
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Macdonald processes
Differential operators
Dimension reduction
A Gaussian type asymptote
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The limit transition to β-Jacobi corner processes

Theorem ([BG15, Theorem 2.8])

Given positive parameters M ∈ Z, and α, θ. Let random family of sequences
{λi}∞i=1, which takes value in ΨM , be distributed according to Macdonald
process with parameters M, {ai}∞i=1, {bi}Mi=1. For ε > 0, set

ai = t i−1, i = 1, 2, · · · ,

bi = tα+i−1, i = 1, 2, · · · ,
q = exp(−ε), t = exp(−θε)

x i
j (ε) = exp(−ελi

j) i = 1, 2, · · · , 1 ≤ j ≤ min{m, n},

then as ε→ 0, the distribution of x1, x2, · · · weakly converges to Pα,M,θ.

Similar to [BG15], the idea to compute the moments for Macdonald process,
then pass to β-Jacobi corner processes.
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An algebraic result from Shuffle algebra

We use another class of operators, which acts on symmetric functions to
extract moments (from Macdonald process). These operators were first used in
[FD16, Appendix A].

Define Λ̃ to be the ring of symmetric formal power series with complex
coefficients in countably many variables x1, x2, · · · Let D−n : Λ̃→ Λ̃, such that

D−n

(∑
λ∈Y

cλPλ(·; q, t)

)
:=
∑
λ∈Y

cλ

(
(1− t−n)

∞∑
i=1

(qλi t−i+1)n
)
Pλ(·; q, t).

Namely, the Macdonald polynomials are the eigenvectors for this class of
operators.
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An algebraic result from Shuffle algebra (cont.)

There is an integral formula for the eigen-operators, see e.g. [Neg13, Theorem
1.2]:

D−n =
(−1)n−1

(2πi)n

∮
· · ·
∮ ∑n

i=1
znt

n−i

zi q
n−i(

1− tz2
qz1

)
· · ·
(

1− tzn
qzn−1

) ∏
i<j

(
1− zi

zj

)(
1− qzi

tzj

)
(

1− zi
tzj

)(
1− qzi

zj

)
×exp

(
∞∑
k=1

qk(1− t−k)
z−k

1 + · · ·+ z−k
n

k
pk

)
exp

(
∞∑
k=1

(zk1 + · · · zkn )(1− q−k)
∂

∂pk

)

×
n∏

i=1

z−1
i dzi ,

where pk is operator of multiplying pk ∈ Λ̃, and ∂
∂pk

is its adjoint operator. The

contours are understood as taking the coefficient of (z1 · · · zn)−1, large and
nested as |zi | < |tzi+1| for each 1 ≤ i ≤ n − 1.
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Apply to special functions

Let f : Br → C be analytic, such that f (0) 6= 0; and g : Br′ → C such that
g(z)f (q−1z) = f (z) for any z ∈ Br .

DN
−n

N∏
i=1

f (ai ) =

(
N∏
i=1

f (ai )

)
(−1)n−1

(2πi)n

∮
· · ·
∮ ∑n

i=1
znt

n−i

zi q
n−i(

1− tz2
qz1

)
· · ·
(

1− tzn
qzn−1

)
×
∏
i<j

(
1− zi

zj

)(
1− qzi

tzj

)
(

1− zi
tzj

)(
1− qzi

zj

) ( n∏
i=1

N∏
i′=1

zi − t−1qai′

zi − qai′

)
n∏

i=1

g(zi )dzi
zi

,

for any a1, · · · , aN ∈ Br . The contours are in Br′ and nested: all enclose 0 and
qai′ , and |zi | < |tzi+1| for each 1 ≤ i ≤ n − 1.
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Apply repeatedly

Apply the operators repeatedly to both sides of the Cauchy identity:

∏
1≤i≤M1,1≤j≤M2

∏∞
k=1(1− taibjq

k−1)∏∞
k=1(1− aibjqk−1)

=
∑
λ∈Y

Pλ(a1, · · · , aM1 ; q, t)Qλ(b1, · · · , bM2 ; q, t)

then one can obtain any mixture moments.

Theorem (Discrete joint moments)

For any positive integers m, n, m̃, ñ, and variables w1, · · · ,wm, w̃1, · · · , w̃m̃,
denote

I(w1, · · · ,wm;α,M, θ, n) =
1

(w2 − w1 + 1− θ) · · · (wm − um−1 + 1− θ)

×
∏

1≤i<j≤m

(wj − wi )(wj − wi + 1− θ)

(wj − wi − θ)(wj − wi + 1)

m∏
i=1

wi − θ
wi + (n − 1)θ

· wi − θα
wi − θα− θM

,
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Apply repeatedly (cont.)

and

L(w1, · · · ,wm; w̃1, · · · , w̃m̃; θ) =
∏

1≤i≤m̃,1≤j≤m

(w̃i − wj)(w̃i − wj + 1− θ)

(w̃i − wj − θ)(w̃i − wj + 1)
.

Then the expectation of higher moments Pk(xN) can be computed via

E
(
Pk1 (xN1 ) · · ·Pkl (x

Nl )
)

=
(−θ)−l

(2πi)k1+···+kl

∮
· · ·
∮ l∏

i=1

I(ui,1, · · · , ui,ki ;α,M, θ,Ni )

×
∏
i<j

L(ui,1, · · · , ui,ki ; uj,1, · · · , uj,kj ; θ)
l∏

i=1

ki∏
i′=1

dui,i′ ,

where for each i = 1, · · · , l , the contours of ui,1, · · · , ui,ki enclose −θ(Ni − 1)
but not θ(α + M), and |ui,1| � · · · � |ui,ki |. For 1 ≤ i < l , we also require
that |ui,ki | � |ui+1,1|.

Problem: huge contour integral!
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Reduce to one contour

Some cases of the following reduction identity was communicated to the us by
Alexei Borodin.

Let s be a positive integer. Let f , g1, · · · , gs be meromorphic functions with
possible poles at {p1, · · · , pm}. Then for n ≥ 2,

1

(2πi)n

∮
· · ·
∮

1

(v2 − v1) · · · (vn − vn−1)

n∏
i=1

f (vi )dvi

s∏
i=1

(
n∑

j=1

gi (vj)

)

=
ns−1

2πi

∮
f (v)n

s∏
i=1

gi (v)dv ,

where the contours in both sides are around all of {p1, · · · , pm}, and for the left
hand side we required |u1| � · · · � |un|.
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An example: in the proof of LLN

From the Theorem of discrete joint moments, there is

E
(
Pk(xN)−Pk(xN−1)

)
=

(−θ)−1

(2πi)k

∮
· · ·
∮

× 1

(u2 − u1 + 1− θ) · · · (uk − uk−1 + 1− θ)

∏
i<j

(uj − ui )(uj − ui + 1− θ)

(uj − ui + 1)(uj − ui − θ)

×

(
k∏

i=1

ui − θ
ui + (N − 1)θ

−
k∏

i=1

ui − θ
ui + (N − 2)θ

)
k∏

i=1

θα− ui
θ(α + M)− ui

dui .

Send L→∞, setting ui ∼ Lθvi ; note

lim
L→∞

L

(
k∏

i=1

ui − θ
ui + (N − 1)θ

−
k∏

i=1

ui − θ
ui + (N − 2)θ

)
= −

k∏
i=1

vi

vi + N̂

(
k∑

i=1

1

vi + N̂

)
.
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An example: in the proof of LLN (cont.)

Thus we have

lim
L→∞

E
(
Pk(xN)−Pk(xN−1)

)
=

1

(2πi)k

∮
· · ·
∮

1

(v2 − v1) · · · (vk − vk−1)

×

(
k∏

i=1

vi

vi + N̂
· α̂− vi

α̂ + M̂ − vi
dvi

)(
k∑

i=1

1

vi + N̂

)
.

In the dimension reduction identity, take s = 1, and

f (v) =
v

v + N̂
· α̂− v

α̂ + M̂ − v
, g1(v) =

1

v + N̂
,

we get

1

2πi

∮ (
v

v + N̂
· v − α̂
v − α̂− M̂

)k
1

v + N̂
dv .
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Prove Gaussianity in an alternative form

To prove Gaussianity, we use the following form:

Given a random vector u = {ui}wi=1 ∈ Rw such that each moment is finite. If
for any h > 2, and v1, · · · , vh ∈ {u1, · · · , uw}, there is

∑
{U1,··· ,Ut}∈Θh

(−1)t−1(t − 1)!
t∏

i=1

E

∏
j∈Ui

vj

 = 0,

then u is (almost surely) Gaussian.
Here Θh be the collection of all unordered partitions of {1, · · · , h}:

Θh =

{
{U1, · · · ,Ut} : t ∈ Z+,

t⋃
i=1

Ui = {1, · · · , h},Ui

⋂
Uj = ∅,Ui 6= ∅

}
.

The proof is via the moment generating function, and the above just says that
all cumulants of order ≥ 3 vanishes. By an induction argument it is also
equivalent to Wick’s formula.
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What we have here: a Gaussian type asymptote

Let k1, · · · , kh and N1 ≤ · · · ≤ Nh be positive integers, and let D ⊂ {1, · · · , h}
be a subset of indexes, such that for any 1 ≤ i < j ≤ h, and j ∈ D, Ni < Nj .
For any i ∈ D, denote

Ei = Pki (x
Ni )−Pki (x

Ni−1)− E
(
Pki (x

Ni )−Pki (x
Ni−1)

)
,

and for any i 6∈ D, denote

Ei = Pki (x
Ni )− E

(
Pki (x

Ni )
)
.

Then

lim
L→∞

Lη
∑

{U1,··· ,Ut}∈Θh

(−1)t−1(t − 1)!
t∏

i=1

E

∏
j∈Ui

Ej

 = 0,

for any η < h − 2 + |D| (for most cases this is more than needed).
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Proof ideas

I Expand the multiplication to a summation of mixed moments.

I Write as a summation of contour integrals, by the Theorem of discrete
joint moments.

I The requirement “i 6= j ∈ D for Ni 6= Nj” ensures that the order of
contour integral is unchanged; the contours of Pki (x

Ni−1) or Pki (x
Ni ) is

always inside the contours of Pkj (x
Nj−1) or Pkj (x

Nj ), for i < j .

I Exploit cancellations: combinatoric identities / graph model.

I Analyze order of decay for the remaining terms.
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The Gaussian type asymptote is not actual Gaussian

One cannot take differences of the same level (for i 6= j ∈ D, Ni 6= Nj).

k

N

Indeed, the covariance

E

[
2∏

i=1

(
Pki (x

N)−Pki (x
N−1)− E

(
Pki (x

N)−Pki (x
N−1)

))]

only decays at the order of L−1.
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Passing to actual Gaussianity: discrete levels

Same formula as the Gaussian type asymptote, but need to remove the
“different level” condition.

I Write as a summation of 2|D|−1 expressions, each satisfying the “different
level” condition, e.g.

E

[
2∏

i=1

(
Pki (x

N)−Pki (x
N−1)− E

(
Pki (x

N)−Pki (x
N−1)

))]
= E

[(
Pk1 (xN)−Pk1 (xN−1)− E

(
Pk1 (xN)−Pk1 (xN−1)

))
×
(
Pk2 (xN)− EPk2 (xN)

)]
− E

[(
Pk1 (xN)−Pk1 (xN−1)− E

(
Pk1 (xN)−Pk1 (xN−1)

))
×
(
Pk2 (xN−1)− EPk2 (xN−1)

)]
I This is at the price of slower decay, but still enough.
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Passing to actual Gaussianity: integral cross levels

For the Gaussianity of integral in y -direction, we need

lim
L→∞

Lh
∑

{U1,··· ,Ut}∈Θh

(−1)t−1(t − 1)!
t∏

i=1

E

∏
j∈Ui

∫ 1

0

gj(yj)Cj(Lyj)dyj

 = 0,

where

Ci (y) = Pki (x
byc)−Pki (x

byc−1)− E
(
Pki (x

byc)−Pki (x
byc−1)

)
.

Need to be careful, since when writing as sum of
contour integrals, the order of contours changes when
the order of y1, · · · , yh changes.

Do integral for each area separately.

y1

y2

0 1

1

0
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