# Anderson-Bernoulli localization on 3D lattice

#### Lingfu Zhang (Joint work with Linjun Li)

Princeton University Department of Mathematics

December 4, 2019



Lingfu Zhang

# Model definition and background

2 Framework of Bourgain-Kenig and Ding-Smart

**3** Discrete unique continuation principle on  $\mathbb{Z}^3$ 



Lingfu Zhang

# Model definition and background



We study the operator  $H := -\Delta + \delta V$  on  $\mathbb{Z}^d$ , where  $\Delta$  is the discrete Laplacian:

$$\Delta u(a) = -2du(a) + \sum_{b \in \mathbb{Z}^d, |a-b|=1} u(b).$$

■  $V : \mathbb{Z}^d \to \mathbb{R}$  is the Bernoulli random potential:  $P[V(a) = 0] = P[V(a) = 1] = \frac{1}{2}$ .

•  $\delta > 0$  is the disorder strength.



We study the operator  $H := -\Delta + \delta V$  on  $\mathbb{Z}^d$ , where  $\Delta$  is the discrete Laplacian:

$$\Delta u(a) = -2du(a) + \sum_{b \in \mathbb{Z}^d, |a-b|=1} u(b).$$

 V: Z<sup>d</sup> → ℝ is the Bernoulli random potential: P[V(a) = 0] = P[V(a) = 1] = <sup>1</sup>/<sub>2</sub>.
δ > 0 is the disorder strength.

#### Physics meaning:

An electron hopping inside a metal with uniform impurity.



# $sp(-\Delta) = [0, 4d]$ , and almost surely $sp(H) = [0, 4d + \delta]$ .



Lingfu Zhang

 $sp(-\Delta) = [0, 4d]$ , and almost surely  $sp(H) = [0, 4d + \delta]$ .

With perturbation  $\delta V$ , random operator *H* can have eigenvalues, with eigenfunctions exponentially localized.



 $sp(-\Delta) = [0, 4d]$ , and almost surely  $sp(H) = [0, 4d + \delta]$ .

With perturbation  $\delta V$ , random operator *H* can have eigenvalues, with eigenfunctions exponentially localized.

# Definition (Anderson localization)

An operator *H* has Anderson localization (AL) in  $I \subset sp(H)$ , if for any polynomially bounded eigenfunction *u* with eigenvalue in *I*, there exist c, C > 0, such that  $|u(a)| \leq C \exp(-c|a|), \forall a \in \mathbb{Z}^d$ .



 $sp(-\Delta) = [0, 4d]$ , and almost surely  $sp(H) = [0, 4d + \delta]$ .

With perturbation  $\delta V$ , random operator *H* can have eigenvalues, with eigenfunctions exponentially localized.

### Definition (Anderson localization)

An operator *H* has Anderson localization (AL) in  $I \subset sp(H)$ , if for any polynomially bounded eigenfunction *u* with eigenvalue in *I*, there exist c, C > 0, such that  $|u(a)| \leq C \exp(-c|a|), \forall a \in \mathbb{Z}^d$ .

Note that this is actually the **spectral localization** (to be distinguished from **dynamical localization**).



 $sp(-\Delta) = [0, 4d]$ , and almost surely  $sp(H) = [0, 4d + \delta]$ .

With perturbation  $\delta V$ , random operator *H* can have eigenvalues, with eigenfunctions exponentially localized.

### Definition (Anderson localization)

An operator *H* has Anderson localization (AL) in  $I \subset sp(H)$ , if for any polynomially bounded eigenfunction *u* with eigenvalue in *I*, there exist c, C > 0, such that  $|u(a)| \leq C \exp(-c|a|), \forall a \in \mathbb{Z}^d$ .

Note that this is actually the **spectral localization** (to be distinguished from **dynamical localization**).

# Theorem (Li and Z., 2019)

There exists  $\lambda_* > 0$  depending on  $\delta$ , such that AL holds for  $H = -\Delta + \delta V$  on  $\mathbb{Z}^3$ , in  $[0, \lambda_*]$ .





Lingfu Zhang

Princeton

3d Anderson

December 4, 2019

When the random potential has continuous distribution:



When the random potential has continuous distribution:

On Z<sup>d</sup>, if the random potential distribution has bounded density, then AL holds in the whole spectrum when δ is large enough, or near the edge or the spectrum. (Fröhlich and Spencer, 1983) (Fröhlich, Martinelli, Scoppola, and Spencer, 1985)



When the random potential has continuous distribution:

- On Z<sup>d</sup>, if the random potential distribution has bounded density, then AL holds in the whole spectrum when δ is large enough, or near the edge or the spectrum. (Fröhlich and Spencer, 1983) (Fröhlich, Martinelli, Scoppola, and Spencer, 1985)
- The same result holds under the condition where the random potential has Hölder continuous distribution. (Carmona, Klein, and Martinelli, 1987)



When the random potential has continuous distribution:

- On Z<sup>d</sup>, if the random potential distribution has bounded density, then AL holds in the whole spectrum when δ is large enough, or near the edge or the spectrum. (Fröhlich and Spencer, 1983) (Fröhlich, Martinelli, Scoppola, and Spencer, 1985)
- The same result holds under the condition where the random potential has Hölder continuous distribution. (Carmona, Klein, and Martinelli, 1987)

On  $\mathbb{Z}$ , AL holds in the whole spectrum with any nontrivial i.i.d. random potential and any  $\delta > 0$ . (Kunz and Souillard, 1980) (Carmona, Klein, and Martinelli, 1987)



Much less is known for Bernoulli potential in dimension  $\geq$  2.



Much less is known for Bernoulli potential in dimension  $\geq$  2.

A breakthrough was made by Bourgain and Kenig, where they studied  $-\Delta + V$  on  $\mathbb{R}^d$  instead of the lattice.

The potential is defined as  $V(x) = \sum_{j \in \mathbb{Z}^d} \epsilon_j \phi(x-j)$ , where  $\{\epsilon_j : j\}$  are i.i.d. Bernoulli random variables and  $\phi$  is a nonnegative bump function supported in  $\{x \in \mathbb{R} : |x| \le \frac{1}{10}\}$ .

They proved that AL holds in  $[0, \varepsilon]$ , for some  $\varepsilon > 0$ .



Much less is known for Bernoulli potential in dimension  $\geq$  2.

A breakthrough was made by Bourgain and Kenig, where they studied  $-\Delta + V$  on  $\mathbb{R}^d$  instead of the lattice.

The potential is defined as  $V(x) = \sum_{j \in \mathbb{Z}^d} \epsilon_j \phi(x-j)$ , where  $\{\epsilon_j : j\}$  are i.i.d. Bernoulli random variables and  $\phi$  is a nonnegative bump function supported in  $\{x \in \mathbb{R} : |x| \le \frac{1}{10}\}$ .

They proved that AL holds in  $[0, \varepsilon]$ , for some  $\varepsilon > 0$ .

Inspired by a Liouville theorem of Buhovsky, Logunov, Malinnikova, and Sodin, on  $\mathbb{Z}^2$  it was recently proved by Ding and Smart that for  $-\Delta + \delta V$ , AL holds in  $[0, \varepsilon]$ , for some  $\varepsilon > 0$  (depending on  $\delta$ ).



# Framework of Bourgain-Kenig and Ding-Smart



Lingfu Zhang

For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .



For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .

Reduce to exponential decay of the resolvent.



For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .

- Reduce to exponential decay of the resolvent.
- Multi-scale analysis.



For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .

- Reduce to exponential decay of the resolvent.
- Multi-scale analysis.
- Key step: Wegner estimate (existence of eigenvalue inside an interval).



For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .

- Reduce to exponential decay of the resolvent.
- Multi-scale analysis.
- Key step: Wegner estimate (existence of eigenvalue inside an interval).

# Theorem (Wegner, 1981)

Take a self-adjoint operator A on  $\mathbb{R}^n$ , and  $V = \text{diag}(V_1, \dots, V_n)$ , an i.i.d. random potential with distribution density bounded by  $\lambda$ . Then for any  $J \subset \mathbb{R}$ ,

 $\mathbb{P}(\text{exists an eigenvalue of } \mathbf{A} + \mathbf{V} \text{ in } \mathbf{J}) \leq \lambda \mathbf{n} |\mathbf{J}|.$ 



For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .

- Reduce to exponential decay of the resolvent.
- Multi-scale analysis.
- Key step: Wegner estimate (existence of eigenvalue inside an interval).

# Theorem (Wegner, 1981)

Take a self-adjoint operator A on  $\mathbb{R}^n$ , and  $V = \text{diag}(V_1, \dots, V_n)$ , an i.i.d. random potential with distribution density bounded by  $\lambda$ . Then for any  $J \subset \mathbb{R}$ ,

 $\mathbb{P}(\text{exists an eigenvalue of } \mathbf{A} + \mathbf{V} \text{ in } \mathbf{J}) \leq \lambda \mathbf{n} |\mathbf{J}|.$ 

There is (as of now) no available such estimates for Bernoulli potentials.



For simplicity, take  $\delta = 1$  and study  $-\Delta + V$ .

- Reduce to exponential decay of the resolvent.
- Multi-scale analysis.
- Key step: Wegner estimate (existence of eigenvalue inside an interval).

# Theorem (Wegner, 1981)

Take a self-adjoint operator A on  $\mathbb{R}^n$ , and  $V = \text{diag}(V_1, \dots, V_n)$ , an i.i.d. random potential with distribution density bounded by  $\lambda$ . Then for any  $J \subset \mathbb{R}$ ,

 $\mathbb{P}(\text{exists an eigenvalue of } \mathbf{A} + \mathbf{V} \text{ in } \mathbf{J}) \leq \lambda \mathbf{n} |\mathbf{J}|.$ 

There is (as of now) no available such estimates for Bernoulli potentials.

Prove a weak Wegner-type estimate within induction on scales.



Arguments from the proof of the Wegner-type estimate:

- Let  $Q_n = \{a \in \mathbb{Z}^d : \|a\|_{\infty} \leq n\}.$
- For  $-\Delta + V$  on  $Q_n$  with Dirichlet boundary condition, let its eigenvalues be  $\lambda_1 \leq \lambda_2 \leq \cdots$ .



Arguments from the proof of the Wegner-type estimate:

- Let  $Q_n = \{a \in \mathbb{Z}^d : ||a||_{\infty} \leq n\}.$
- For  $-\Delta + V$  on  $Q_n$  with Dirichlet boundary condition, let its eigenvalues be  $\lambda_1 \leq \lambda_2 \leq \cdots$ .
- Given some fixed  $r \in \mathbb{R}$  and j, we want a bound:

$$\mathbb{P}(|\lambda_j - r| < \exp(-n^{1-\varepsilon})) < n^{-\delta_0}$$

for some  $\delta_0 > 0$ .



Arguments from the proof of the Wegner-type estimate:

- Let  $Q_n = \{a \in \mathbb{Z}^d : ||a||_{\infty} \leq n\}.$
- For  $-\Delta + V$  on  $Q_n$  with Dirichlet boundary condition, let its eigenvalues be  $\lambda_1 \leq \lambda_2 \leq \cdots$ .
- Given some fixed  $r \in \mathbb{R}$  and j, we want a bound:

$$\mathbb{P}(|\lambda_j - r| < \exp(-n^{1-\varepsilon})) < n^{-\delta_0}$$

for some  $\delta_0 > 0$ .

Consider the collection of potential:

$$\mathcal{A} := \{ V : |\lambda_j - r| < \exp(-n^{1-\varepsilon}) \} \subset \{0,1\}^{Q_n}.$$

It is equivalent to show that  $|\mathcal{A}| \leq 2^{(2n+1)^d} n^{-\delta_0}$ .



Following Bourgain and Kenig, 2005, we wish to control  $|\mathcal{A}|$  using variation arguments and Sperner's Theorem.

### Theorem (Sperner's Theorem)

A family of sets is called a Sperner family, if none of them is a strict subset of another. If  $\mathcal{M}$  is a Sperner family of subsets of  $\{1, 2, \dots, m\}$ , then we have

$$|\mathcal{M}| \leq \binom{m}{\left\lfloor \frac{m}{2} \right\rfloor}.$$



Following Bourgain and Kenig, 2005, we wish to control  $|\mathcal{A}|$  using variation arguments and Sperner's Theorem.

# Theorem (Sperner's Theorem)

A family of sets is called a Sperner family, if none of them is a strict subset of another. If  $\mathcal{M}$  is a Sperner family of subsets of  $\{1, 2, \cdots, m\}$ , then we have

$$|\mathcal{M}| \leq \binom{m}{\left\lfloor \frac{m}{2} \right\rfloor}.$$

If  $|\mathcal{A}| > {\binom{m}{\lfloor \frac{m}{2} \rfloor}}$  for  $m = (2n+1)^d$ , there are two different potentials  $V_1 \leq V_2 \in \mathcal{A}$ , such that for both  $-\Delta + V_1$  and  $-\Delta + V_2$ , we have  $|\lambda_j - r| < \exp(-n^{1-\varepsilon})$ . By a variation argument, this is not possible if  $|u_j(a)|$  is not too small for some *a* with  $V_1(a) \neq V_2(a)$ .



For  $\mathbb{R}^d$ , one can show that the eigenfunction cannot be too small anywhere.



For  $\mathbb{R}^d$ , one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique continuation principle on  $\mathbb{R}^d$ )

Suppose  $u \in C^2(\mathbb{R}^d)$ ,  $|\Delta u(a)| \le C|u(a)| \le C^2|u(0)|$  for any  $a \in B_r$ . Then

$$\int_{B_1(a)} |u(x)| dx \geq |u(\mathbf{0})| exp(-c|a|^{rac{4}{3}} log(|a|))$$

for any  $a \in B_{r/2}$ .

Thus 
$$|\mathcal{A}| \leq {\binom{m}{\lfloor \frac{m}{2} \rfloor}}$$
 for  $m = (2n+1)^d$ .



For  $\mathbb{R}^d$ , one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique continuation principle on  $\mathbb{R}^d$ )

Suppose  $u \in C^2(\mathbb{R}^d)$ ,  $|\Delta u(a)| \le C|u(a)| \le C^2|u(0)|$  for any  $a \in B_r$ . Then

$$\int_{B_1(a)} |u(x)| dx \geq |u(\mathbf{0})| exp(-c|a|^{rac{4}{3}} log(|a|))$$

for any  $a \in B_{r/2}$ .

Thus  $|\mathcal{A}| \leq {\binom{m}{\lfloor \frac{m}{2} \rfloor}}$  for  $m = (2n+1)^d$ . On  $\mathbb{Z}^d$ , such *u* can be supported on a "lower dimension" set.



For  $\mathbb{R}^d$ , one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique continuation principle on  $\mathbb{R}^d$ )

Suppose  $u \in C^2(\mathbb{R}^d)$ ,  $|\Delta u(a)| \le C|u(a)| \le C^2|u(\mathbf{0})|$  for any  $a \in B_r$ . Then

$$\int_{B_1(a)} |u(x)| dx \ge |u(\mathbf{0})| exp(-c|a|^{rac{4}{3}} log(|a|))$$

for any  $a \in B_{r/2}$ .

Thus  $|\mathcal{A}| \leq {\binom{m}{2}}$  for  $m = (2n+1)^d$ . On  $\mathbb{Z}^d$ , such u can be supported on a "lower dimension" set. Example: on  $\mathbb{Z}^3$ , let  $u : (x, y, z) \mapsto (-1)^x \exp(sz) \mathbb{1}_{x=y}$ , where  $s \in \mathbb{R}_+$  is the constant satisfying  $\exp(s) + \exp(-s) = 6$ . One can check that  $\Delta u = 0$ .



For  $\mathbb{R}^d$ , one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique continuation principle on  $\mathbb{R}^d$ )

Suppose  $u \in C^2(\mathbb{R}^d)$ ,  $|\Delta u(a)| \le C|u(a)| \le C^2|u(\mathbf{0})|$  for any  $a \in B_r$ . Then

$$\int_{B_1(a)} |u(x)| dx \geq |u(\mathbf{0})| exp(-c|a|^{rac{4}{3}} log(|a|))$$

for any  $a \in B_{r/2}$ .

Thus  $|\mathcal{A}| \leq {\binom{m}{2}}$  for  $m = (2n+1)^d$ . On  $\mathbb{Z}^d$ , such u can be supported on a "lower dimension" set. Example: on  $\mathbb{Z}^3$ , let  $u : (x, y, z) \mapsto (-1)^x \exp(sz) \mathbb{1}_{x=y}$ , where  $s \in \mathbb{R}_+$  is the constant satisfying  $\exp(s) + \exp(-s) = 6$ . One can check that  $\Delta u = 0$ . We need a **discrete unique continuation principle (DUCP)**.



### Theorem (Ding and Smart, 2019)

Let  $m' < m \in \mathbb{Z}_+$ , and  $\mathcal{M}$  be a family of subsets of  $\{1, 2, \cdots, m\}$ . Suppose  $\mathcal{M}$  satisfies that, for every  $A \in \mathcal{M}$ , there is a set  $B(A) \subset \{1, 2, \cdots, m\} \setminus A$  such that  $|B(A)| \ge m'$ , and  $A \subset A' \in \mathcal{M}$  implies  $A' \cap B(A) = \emptyset$ . Then we have

$$|\mathcal{M}| \leq 2^m m^{\frac{1}{2}} m'^{-1}.$$



### Theorem (Ding and Smart, 2019)

Let  $m' < m \in \mathbb{Z}_+$ , and  $\mathcal{M}$  be a family of subsets of  $\{1, 2, \cdots, m\}$ . Suppose  $\mathcal{M}$  satisfies that, for every  $A \in \mathcal{M}$ , there is a set  $B(A) \subset \{1, 2, \cdots, m\} \setminus A$  such that  $|B(A)| \ge m'$ , and  $A \subset A' \in \mathcal{M}$  implies  $A' \cap B(A) = \emptyset$ . Then we have

$$|\mathcal{M}| \leq 2^m m^{\frac{1}{2}} m'^{-1}.$$

Note that in order to have a nontrivial bound for  $|\mathcal{M}|$ , one only needs  $m' > m^{\frac{1}{2}}$ .



### Theorem (Ding and Smart, 2019)

Let  $m' < m \in \mathbb{Z}_+$ , and  $\mathcal{M}$  be a family of subsets of  $\{1, 2, \cdots, m\}$ . Suppose  $\mathcal{M}$  satisfies that, for every  $A \in \mathcal{M}$ , there is a set  $B(A) \subset \{1, 2, \cdots, m\} \setminus A$  such that  $|B(A)| \ge m'$ , and  $A \subset A' \in \mathcal{M}$  implies  $A' \cap B(A) = \emptyset$ . Then we have

$$|\mathcal{M}| \leq 2^m m^{\frac{1}{2}} m'^{-1}.$$

Note that in order to have a nontrivial bound for  $|\mathcal{M}|$ , one only needs  $m' > m^{\frac{1}{2}}$ .

Each potential  $V \in \mathcal{A}$  corresponds to an  $A_V \subset Q_n$ , and we let  $B(A_V) := \{a \in Q_n \setminus A_V : |u_j(a)| > C^{-n} ||u_j||_{\ell^{\infty}(Q_n)}\} \subset Q_n \setminus A_V.$ 



# Theorem (Ding and Smart, 2019)

Let  $m' < m \in \mathbb{Z}_+$ , and  $\mathcal{M}$  be a family of subsets of  $\{1, 2, \cdots, m\}$ . Suppose  $\mathcal{M}$  satisfies that, for every  $A \in \mathcal{M}$ , there is a set  $B(A) \subset \{1, 2, \cdots, m\} \setminus A$  such that  $|B(A)| \ge m'$ , and  $A \subset A' \in \mathcal{M}$  implies  $A' \cap B(A) = \emptyset$ . Then we have

$$|\mathcal{M}| \leq 2^m m^{\frac{1}{2}} m'^{-1}.$$

Note that in order to have a nontrivial bound for  $|\mathcal{M}|$ , one only needs  $m' > m^{\frac{1}{2}}$ .

Each potential  $V \in \mathcal{A}$  corresponds to an  $A_V \subset Q_n$ , and we let  $B(A_V) := \{a \in Q_n \setminus A_V : |u_j(a)| > C^{-n} ||u_j||_{\ell^{\infty}(Q_n)}\} \subset Q_n \setminus A_V.$ We wish to show that each  $|B(A_V)| > n^{\frac{d}{2} + \delta_0}$ .



The case where there is no potential:

Theorem (Buhovsky, Logunov, Malinnikova, and Sodin, 2017)

For d = 2, there exist universal constants  $C, \varepsilon > 0$  such that the following holds. Suppose  $u : Q_n \to \mathbb{R}$  satisfy  $\Delta u = 0$  in  $Q_n$  and  $|u(\mathbf{0})| = 1$ , then

$$|\{a \in Q_n : |u(a)| \ge C^{-n}\}| \ge \varepsilon n^2.$$



The case where there is no potential:

Theorem (Buhovsky, Logunov, Malinnikova, and Sodin, 2017)

For d = 2, there exist universal constants  $C, \varepsilon > 0$  such that the following holds. Suppose  $u : Q_n \to \mathbb{R}$  satisfy  $\Delta u = 0$  in  $Q_n$  and  $|u(\mathbf{0})| = 1$ , then

$$|\{a \in Q_n : |u(a)| \ge C^{-n}\}| \ge \varepsilon n^2.$$

This is not true for arbitrary potential. Consider  $u : (x, y) \mapsto (-1)^x \mathbb{1}_{x=y}$ , then we have  $\Delta u = -4u$ .



However, inspired by their method, a probabilistic version of 2D DUCP is proved.

### Theorem (Ding and Smart, 2019)

There are constants  $\alpha > 1 > \varepsilon > 0$  such that, if  $\lambda \in \mathbb{R}$  and  $n > \alpha$ , then  $\mathbb{P}(\mathcal{E}) \ge 1 - \exp(-\varepsilon n^{\frac{1}{4}})$ , where  $\mathcal{E}$  denotes the event that

 $|\{a \in Q_n : |u(a)| \ge exp(-\alpha nlog(n))|u(\mathbf{0})|\}| \ge \varepsilon n^{\frac{3}{2}}log(n)^{-1}$ 

holds whenever  $|\lambda - \lambda'| < \exp(-\alpha(n\log(n))^{\frac{1}{2}})$ , and  $(-\Delta + V)u = \lambda' u$  in  $Q_n$ .



# Discrete unique continuation principle on $\mathbb{Z}^3$



Lingfu Zhang

Unlike the 2D lattice, on the 3D lattice, the desired DUCP holds for any potential, rather than just for typical ones.

# Theorem (Li and Z., 2019)

There exists constant  $p > \frac{3}{2}$  such that the following holds. For each K > 0, there are constants  $C_0, C_1 > 0$ , such that for any  $n \in \mathbb{Z}_+$ , and functions  $u, V : \mathbb{Z}^3 \to \mathbb{R}$  with  $\Delta u = Vu$ , and  $\|V\|_{\infty} \leq K$  in  $Q_n$ , we have that

$$|\{a \in Q_n : |u(a)| \ge \exp(-C_0 n)|u(\mathbf{0})|\}| \ge C_1 n^p$$

Following the framework of Bourgain-Kenig and Ding-Smart, this implies 3D Anderson-Bernoulli localization.



We first prove a "small scale DUCP".

#### Theorem (Li and Z., small scale DUCP)

For each K > 0, there exist  $C_0, C_1$  relying only on K, such that for any  $n \in \mathbb{Z}_+$  and functions  $u, V : \mathbb{Z}^3 \to \mathbb{R}$  with  $\Delta u = Vu$ , and  $\|V\|_{\infty} \leq K$  in  $Q_n$ , we have that

$$\left|\left\{a\in Q_n: |u(a)|\geq \exp(-C_0n^3)|u(\mathbf{0})|\right\}\right|\geq C_1n^2(\log(n))^{-1}$$



We first prove a "small scale DUCP".

#### Theorem (Li and Z., small scale DUCP)

For each K > 0, there exist  $C_0, C_1$  relying only on K, such that for any  $n \in \mathbb{Z}_+$  and functions  $u, V : \mathbb{Z}^3 \to \mathbb{R}$  with  $\Delta u = Vu$ , and  $\|V\|_{\infty} \leq K$  in  $Q_n$ , we have that

$$\left|\left\{a\in Q_n: |u(a)|\geq \exp(-C_0n^3)|u(\mathbf{0})|\right\}\right|\geq C_1n^2(\log(n))^{-1}$$

Note that the power of  $n^2$  cannot be improved, by the example  $u: (x, y, z) \mapsto (-1)^x \mathbb{1}_{x=y}$ .



The proof is based on geometric arguments on  $\mathbb{Z}^3$ .



The proof is based on geometric arguments on  $\mathbb{Z}^3$ . We consider four collections of planes in  $\mathbb{R}^3$ .

#### Definition

Let  $\mathbf{e}_1 := (1, 0, 0)$ ,  $\mathbf{e}_2 := (0, 1, 0)$ , and  $\mathbf{e}_3 := (0, 0, 1)$  to be the standard basis of  $\mathbb{R}^3$ , and denote  $\lambda_1 := \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ ,  $\lambda_2 := -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ ,  $\lambda_3 := \mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$ ,  $\lambda_4 := -\mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$ . For any  $k \in \mathbb{Z}$ , and  $\tau \in \{1, 2, 3, 4\}$ , denote  $\mathcal{P}_{\tau,k} := \{a \in \mathbb{R}^3 : a \cdot \lambda_\tau = k\}$ .



The proof is based on geometric arguments on  $\mathbb{Z}^3$ . We consider four collections of planes in  $\mathbb{R}^3$ .

#### Definition

Let  $\mathbf{e}_1 := (1, 0, 0)$ ,  $\mathbf{e}_2 := (0, 1, 0)$ , and  $\mathbf{e}_3 := (0, 0, 1)$  to be the standard basis of  $\mathbb{R}^3$ , and denote  $\lambda_1 := \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ ,  $\lambda_2 := -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ ,  $\lambda_3 := \mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$ ,  $\lambda_4 := -\mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$ . For any  $k \in \mathbb{Z}$ , and  $\tau \in \{1, 2, 3, 4\}$ , denote  $\mathcal{P}_{\tau,k} := \{a \in \mathbb{R}^3 : a \cdot \lambda_\tau = k\}$ .

We note that the intersection of  $\mathbb{Z}^3$  with each of these planes is a **2D triangular lattice**.



#### Ideas of the Small Scale DUCP: 2D Triangular Lattice



Using arguments similar to that of Buhovsky, Logunov, Malinnikova, and Sodin, we get estimates on the 2D triangular lattice.

#### Theorem (Li and Z., 2D triangular lattice estimate)

There exist constants C, c > 0, such that for any positive integer n and any function  $u : \Lambda \to \mathbb{R}$ , if  $|u(a) + u(a - \xi) + u(a + \eta)| < C^{-n}|u(\mathbf{0})|$  for any  $a \in \Lambda_n$ , then

$$\left|\left\{a\in\Lambda_n:|u(a)|>C^{-n}|u(\mathbf{0})|\right\}\right|>cn^2.$$



Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ .



Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ . **Step 1.** On  $\mathcal{P}_{1,0} = \{(x, y, z) : x + y + z = 0\}$ , find a sequence of triangles  $T_0, T_1, \cdots$ .



For  $a_0, a_1, \cdots$  being the middle points of one side of  $T_0, T_1, \cdots$ , we have  $|u(a')| < C^{-n}|u(a_i)|$  for a' inside  $T_i$ .



Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ . **Step 2.** Using each  $T_i$  as basement, construct a **pyramid**.



Lingfu Zhang

Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ . **Step 2.** Using each  $T_i$  as basement, construct a **pyramid**.





Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ . **Step 2.** Using each  $T_i$  as basement, construct a **pyramid**.



Each face of the boundary of the pyramid is a subset of some plane  $\mathcal{P}_{\tau,k}$ .



Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ . **Step 2.** Using each  $T_i$  as basement, construct a **pyramid**.



- Each face of the boundary of the pyramid is a subset of some plane  $\mathcal{P}_{\tau,k}$ .
- By construction we ensure that  $|u| < C^{-n}|u(a_i)|$  inside the pyramid, while on the boundary there are points with large |u|.



Next we decompose  $\mathbb{Z}^3$  into triangular lattice in  $\mathcal{P}_{\tau,k}$ . **Step 2.** Using each  $T_i$  as basement, construct a **pyramid**.



- Each face of the boundary of the pyramid is a subset of some plane  $\mathcal{P}_{\tau,k}$ .
- By construction we ensure that  $|u| < C^{-n}|u(a_i)|$  inside the pyramid, while on the boundary there are points with large |u|.
- Apply the estimates on 2D triangular lattice to the faces.



# 3D Discrete Unique Continuation Principle

Now we have that

$$\left|\left\{a \in Q_n : |u(a)| \ge \exp(-C_0 n^3)|u(\mathbf{0})|\right\}\right| \ge C_1 n^2 (\log(n))^{-1}.$$



Lingfu Zhang

$$\left|\left\{a \in Q_n : |u(a)| \ge \exp(-C_0 n^3)|u(\mathbf{0})|\right\}\right| \ge C_1 n^2 (\log(n))^{-1}.$$

To finish the proof of DUCP, we find many copies of  $Q_{n^{1/3}}$  inside  $Q_n$ , and apply small scale DUCP to each of them.



$$\left|\left\{a \in Q_n : |u(a)| \ge \exp(-C_0 n^3)|u(\mathbf{0})|\right\}\right| \ge C_1 n^2 (\log(n))^{-1}$$

To finish the proof of DUCP, we find many copies of  $Q_{n^{1/3}}$  inside  $Q_n$ , and apply small scale DUCP to each of them.

# Theorem (Large Scale DUCP)

There exist universal constants  $\beta$  and  $\alpha > \frac{5}{4}$  such that for any positive integers  $m \leq n$  and any positive real K, the following is true. For any  $u, V : \mathbb{Z}^3 \to \mathbb{R}$  such that  $\Delta u = Vu$  and  $\|V\|_{\infty} \leq K$  in  $Q_n$ , we can find a subset  $\Theta \subset Q_n$  with  $|\Theta| \geq \beta \left(\frac{n}{m}\right)^{\alpha}$ , such that

■  $|u(b)| \ge (K + 11)^{-12n} |u(0)|$  for each  $b \in \Theta$ .

2 
$$Q_m(b) \bigcap Q_m(b') = \emptyset$$
 for  $b, b' \in \Theta$ ,  $b \neq b'$ .

**a**  $Q_m(b) \subseteq Q_n$  for each  $b \in \Theta$ .



$$\left|\left\{a \in Q_n : |u(a)| \ge \exp(-C_0 n^3)|u(\mathbf{0})|\right\}\right| \ge C_1 n^2 (\log(n))^{-1}$$

To finish the proof of DUCP, we find many copies of  $Q_{n^{1/3}}$  inside  $Q_n$ , and apply small scale DUCP to each of them.

# Theorem (Large Scale DUCP)

There exist universal constants  $\beta$  and  $\alpha > \frac{5}{4}$  such that for any positive integers  $m \leq n$  and any positive real K, the following is true. For any  $u, V : \mathbb{Z}^3 \to \mathbb{R}$  such that  $\Delta u = Vu$  and  $\|V\|_{\infty} \leq K$  in  $Q_n$ , we can find a subset  $\Theta \subset Q_n$  with  $|\Theta| \geq \beta \left(\frac{n}{m}\right)^{\alpha}$ , such that

∎  $|u(b)| \ge (K + 11)^{-12n} |u(0)|$  for each  $b \in \Theta$ .

**I**  $Q_m(b) \subseteq Q_n$  for each  $b \in \Theta$ .

We take  $m = n^{1/3}$ , and apply small scale DUCP to each  $Q_{n^{1/3}}(b)$ .

$$\left|\left\{a \in Q_n : |u(a)| \ge \exp(-C_0 n^3)|u(\mathbf{0})|\right\}\right| \ge C_1 n^2 (\log(n))^{-1}$$

To finish the proof of DUCP, we find many copies of  $Q_{n^{1/3}}$  inside  $Q_n$ , and apply small scale DUCP to each of them.

# Theorem (Large Scale DUCP)

There exist universal constants  $\beta$  and  $\alpha > \frac{5}{4}$  such that for any positive integers  $m \leq n$  and any positive real K, the following is true. For any  $u, V : \mathbb{Z}^3 \to \mathbb{R}$  such that  $\Delta u = Vu$  and  $\|V\|_{\infty} \leq K$  in  $Q_n$ , we can find a subset  $\Theta \subset Q_n$  with  $|\Theta| \geq \beta \left(\frac{n}{m}\right)^{\alpha}$ , such that

■  $|u(b)| \ge (K + 11)^{-12n} |u(\mathbf{0})|$  for each  $b \in \Theta$ .

**a**  $Q_m(b) \subseteq Q_n$  for each  $b \in \Theta$ .

We take  $m = n^{1/3}$ , and apply small scale DUCP to each  $Q_{n^{1/3}}(b)$ . Note that we cannot directly get DUCP by taking m = 1. Fix *m* and do induction on *n*:

find a few  $b \in Q_n$ ,  $|u(b)| \ge (K + 11)^{-2n}|u(\mathbf{0})|$ , and are far away from each other; then apply induction hypothesis to cubes centered at each *b*.



### Fix *m* and do induction on *n*:

find a few  $b \in Q_n$ ,  $|u(b)| \ge (K + 11)^{-2n}|u(\mathbf{0})|$ , and are far away from each other; then apply induction hypothesis to cubes centered at each *b*.

# Lemma (One Step Cone Property)

For any  $a \in \mathbb{Z}^3$ ,  $s \in \{\pm \mathbf{e}_1, \pm \mathbf{e}_2, \pm \mathbf{e}_3\}$ , we have

$$\max_{b \in a+s+\{\mathbf{0},\pm \mathbf{e}_1,\pm \mathbf{e}_2,\pm \mathbf{e}_3\}\setminus\{a\}} |u(b)| \ge (K+11)^{-1} |u(a)|.$$



# Lemma (One Step Cone Property)

For any  $a \in \mathbb{Z}^3$ ,  $s \in \{\pm \mathbf{e}_1, \pm \mathbf{e}_2, \pm \mathbf{e}_3\}$ , we have

$$\max_{b \in \boldsymbol{a} + \boldsymbol{s} + \{\boldsymbol{0}, \pm \boldsymbol{e}_1, \pm \boldsymbol{e}_2, \pm \boldsymbol{e}_3\} \setminus \{\boldsymbol{a}\}} |\boldsymbol{u}(\boldsymbol{b})| \geq (K + 11)^{-1} |\boldsymbol{u}(\boldsymbol{a})|.$$

Keep walking in one of the 2d = 6 directions, we can find a chain in a cone.







# Thank you!



Lingfu Zhang

- Bourgain, J., & Kenig, C. (2005). On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math. 161(2), 389–426.
- Buhovsky, L., Logunov, A., Malinnikova, E., & Sodin, M. (2017). A discrete harmonic function bounded on a large portion of Z<sup>2</sup> is constant. arXiv:1712.07902.
- Carmona, R., Klein, A., & Martinelli, F. (1987). Anderson localization for bernoulli and other singular potentials. Comm. Math. Phys. 108(1), 41–66.
  - Ding, J., & Smart, C. (2019). Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice. Invent. math.
  - Fröhlich, J., Martinelli, F., Scoppola, E., & Spencer, T. (1985). Constructive proof of localization in the Anderson tight binding model. Comm. Math. Phys. 101(1), 21– 46.
  - Fröhlich, J., & Spencer, T. (1983). Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys. 88(2), 151–184.
  - Kunz, H., & Souillard, B. (1980). Sur le spectre des opérateurs aux différences finies aléatoires. Comm. Math. Phys. 78(2), 201–246.
  - Li, L., & Z. (2019). Anderson-bernoulli localization on the 3d lattice and discrete unique continuation principle. arXiv:1906.04350.
  - Wegner, F. (1981). Bounds on the density of states in disordered systems. Zeitschrift für Physik B Condensed Matter, 44(1), 9–15.

