Anderson-Bernoulli localization on 3D lattice

Lingfu Zhang
(Joint work with Linjun Li)

Princeton University
Department of Mathematics

December 4, 2019

Schedule

(1) Model definition and background

2 Framework of Bourgain-Kenig and Ding-Smart

3 Discrete unique continuation principle on \mathbb{Z}^{3}

Model definition and background

We study the operator $H:=-\Delta+\delta V$ on \mathbb{Z}^{d}, where
$\square \Delta$ is the discrete Laplacian:

$$
\Delta u(a)=-2 d u(a)+\sum_{b \in \mathbb{Z}^{d},|a-b|=1} u(b) .
$$

$\square V: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is the Bernoulli random potential: $P[V(a)=0]=P[V(a)=1]=\frac{1}{2}$.
$\square \delta>0$ is the disorder strength.

We study the operator $H:=-\Delta+\delta V$ on \mathbb{Z}^{d}, where
$\square \Delta$ is the discrete Laplacian:

$$
\Delta u(a)=-2 d u(a)+\sum_{b \in \mathbb{Z}^{d},|a-b|=1} u(b) .
$$

$\square V: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is the Bernoulli random potential: $P[V(a)=0]=P[V(a)=1]=\frac{1}{2}$.
$\square \delta>0$ is the disorder strength.

Physics meaning:

An electron hopping inside a metal with uniform impurity.

Recall:

$s p(-\Delta)=[0,4 d]$, and almost surely $s p(H)=[0,4 d+\delta]$.

Recall:

$s p(-\Delta)=[0,4 d]$, and almost surely $s p(H)=[0,4 d+\delta]$.
With perturbation δV, random operator H can have eigenvalues, with eigenfunctions exponentially localized.

Recall:

$s p(-\Delta)=[0,4 d]$, and almost surely $s p(H)=[0,4 d+\delta]$.
With perturbation δV, random operator H can have eigenvalues, with eigenfunctions exponentially localized.

Definition (Anderson localization)

An operator H has Anderson localization $(A L)$ in $I \subset s p(H)$, if for any polynomially bounded eigenfunction u with eigenvalue in I, there exist $c, C>0$, such that $|u(a)| \leq C \exp (-c|a|), \forall a \in \mathbb{Z}^{d}$.

Recall:

$s p(-\Delta)=[0,4 d]$, and almost surely $s p(H)=[0,4 d+\delta]$.
With perturbation δV, random operator H can have eigenvalues, with eigenfunctions exponentially localized.

Definition (Anderson localization)

An operator H has Anderson localization $(A L)$ in $I \subset s p(H)$, if for any polynomially bounded eigenfunction u with eigenvalue in I, there exist $c, C>0$, such that $|u(a)| \leq C \exp (-c|a|), \forall a \in \mathbb{Z}^{d}$.

Note that this is actually the spectral localization (to be distinguished from dynamical localization).

Recall:

$s p(-\Delta)=[0,4 d]$, and almost surely $s p(H)=[0,4 d+\delta]$.
With perturbation δV, random operator H can have eigenvalues, with eigenfunctions exponentially localized.

Definition (Anderson localization)

An operator H has Anderson localization (AL) in $I \subset s p(H)$, if for any polynomially bounded eigenfunction u with eigenvalue in I, there exist $c, C>0$, such that $|u(a)| \leq C \exp (-c|a|), \forall a \in \mathbb{Z}^{d}$.

Note that this is actually the spectral localization (to be distinguished from dynamical localization).

Theorem (Li and Z., 2019)

There exists $\lambda_{*}>0$ depending on δ, such that $A L$ holds for $H=-\Delta+\delta V$ on \mathbb{Z}^{3}, in $\left[0, \lambda_{*}\right]$.

A (very limited) historical review of Anderson Localization:

A (very limited) historical review of Anderson Localization:

When the random potential has continuous distribution:

A (very limited) historical review of Anderson Localization:

When the random potential has continuous distribution:
${ }_{11}$ On \mathbb{Z}^{d}, if the random potential distribution has bounded density, then AL holds in the whole spectrum when δ is large enough, or near the edge or the spectrum. (Fröhlich and Spencer, 1983)
(Fröhlich, Martinelli, Scoppola, and Spencer, 1985)

A (very limited) historical review of Anderson Localization:

When the random potential has continuous distribution:
rion \mathbb{Z}^{d}, if the random potential distribution has bounded density, then AL holds in the whole spectrum when δ is large enough, or near the edge or the spectrum. (Fröhlich and Spencer, 1983) (Fröhlich, Martinelli, Scoppola, and Spencer, 1985)
a The same result holds under the condition where the random potential has Hölder continuous distribution. (Carmona, Klein, and Martinelli, 1987)

A (very limited) historical review of Anderson Localization:

When the random potential has continuous distribution:
rion \mathbb{Z}^{d}, if the random potential distribution has bounded density, then AL holds in the whole spectrum when δ is large enough, or near the edge or the spectrum. (Fröhlich and Spencer, 1983) (Fröhlich, Martinelli, Scoppola, and Spencer, 1985)

- The same result holds under the condition where the random potential has Hölder continuous distribution. (Carmona, Klein, and Martinelli, 1987)
On \mathbb{Z}, AL holds in the whole spectrum with any nontrivial i.i.d. random potential and any $\delta>0$.
(Kunz and Souillard, 1980)
(Carmona, Klein, and Martinelli, 1987)

A (very limited) historical review of Anderson Localization:

Much less is known for Bernoulli potential in dimension ≥ 2.

A (very limited) historical review of Anderson Localization:

Much less is known for Bernoulli potential in dimension ≥ 2.
II A breakthrough was made by Bourgain and Kenig, where they studied $-\Delta+V$ on \mathbb{R}^{d} instead of the lattice.

The potential is defined as $V(x)=\sum_{j \in \mathbb{Z}^{d}} \epsilon_{j} \phi(x-j)$, where $\left\{\epsilon_{j}: j\right\}$ are i.i.d. Bernoulli random variables and ϕ is a nonnegative bump function supported in $\left\{x \in \mathbb{R}:|x| \leq \frac{1}{10}\right\}$.

They proved that AL holds in $[0, \varepsilon]$, for some $\varepsilon>0$.

A (very limited) historical review of Anderson Localization:

Much less is known for Bernoulli potential in dimension ≥ 2.

- A breakthrough was made by Bourgain and Kenig, where they studied $-\Delta+V$ on \mathbb{R}^{d} instead of the lattice.
The potential is defined as $V(x)=\sum_{j \in \mathbb{Z}^{d}} \epsilon_{j} \phi(x-j)$, where $\left\{\epsilon_{j}: j\right\}$ are i.i.d. Bernoulli random variables and ϕ is a nonnegative bump function supported in $\left\{x \in \mathbb{R}:|x| \leq \frac{1}{10}\right\}$.
They proved that AL holds in $[0, \varepsilon]$, for some $\varepsilon>0$.
a Inspired by a Liouville theorem of Buhovsky, Logunov, Malinnikova, and Sodin, on \mathbb{Z}^{2} it was recently proved by Ding and Smart that for $-\Delta+\delta V$, AL holds in $[0, \varepsilon]$, for some $\varepsilon>0$ (depending on δ).

Framework of Bourgain-Kenig and Ding-Smart

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.
\square Reduce to exponential decay of the resolvent.

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.
\square Reduce to exponential decay of the resolvent.
■ Multi-scale analysis.

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.
\square Reduce to exponential decay of the resolvent.

- Multi-scale analysis.

■ Key step: Wegner estimate (existence of eigenvalue inside an interval).

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.
\square Reduce to exponential decay of the resolvent.
■ Multi-scale analysis.
■ Key step: Wegner estimate (existence of eigenvalue inside an interval).

Theorem (Wegner, 1981)

Take a self-adjoint operator A on \mathbb{R}^{n}, and $V=\operatorname{diag}\left(V_{1}, \cdots, V_{n}\right)$, an i.i.d. random potential with distribution density bounded by λ. Then for any $J \subset \mathbb{R}$,

$$
\mathbb{P}(\text { exists an eigenvalue of } A+V \text { in } J) \leq \lambda n|J|
$$

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.
\square Reduce to exponential decay of the resolvent.
■ Multi-scale analysis.
■ Key step: Wegner estimate (existence of eigenvalue inside an interval).

Theorem (Wegner, 1981)

Take a self-adjoint operator A on \mathbb{R}^{n}, and $V=\operatorname{diag}\left(V_{1}, \cdots, V_{n}\right)$, an i.i.d. random potential with distribution density bounded by λ. Then for any $J \subset \mathbb{R}$,

$$
\mathbb{P}(\text { exists an eigenvalue of } A+V \text { in } J) \leq \lambda n|J|
$$

There is (as of now) no available such estimates for Bernoulli potentials.

At a high level: some ingredients for the Bernoulli case

For simplicity, take $\delta=1$ and study $-\Delta+V$.
\square Reduce to exponential decay of the resolvent.

- Multi-scale analysis.

■ Key step: Wegner estimate (existence of eigenvalue inside an interval).

Theorem (Wegner, 1981)

Take a self-adjoint operator A on \mathbb{R}^{n}, and $V=\operatorname{diag}\left(V_{1}, \cdots, V_{n}\right)$, an i.i.d. random potential with distribution density bounded by λ. Then for any $J \subset \mathbb{R}$,

$$
\mathbb{P}(\text { exists an eigenvalue of } A+V \text { in } J) \leq \lambda n|J|
$$

There is (as of now) no available such estimates for Bernoulli potentials.

Prove a weak Wegner-type estimate within induction on scales.

Wegner-Type Estimate

Arguments from the proof of the Wegner-type estimate:
\square Let $Q_{n}=\left\{a \in \mathbb{Z}^{d}:\|a\|_{\infty} \leq n\right\}$.
\square For $-\Delta+V$ on Q_{n} with Dirichlet boundary condition, let its eigenvalues be $\lambda_{1} \leq \lambda_{2} \leq \cdots$.

Wegner-Type Estimate

Arguments from the proof of the Wegner-type estimate:
$■$ Let $Q_{n}=\left\{a \in \mathbb{Z}^{d}:\|a\|_{\infty} \leq n\right\}$.

- For $-\Delta+V$ on Q_{n} with Dirichlet boundary condition, let its eigenvalues be $\lambda_{1} \leq \lambda_{2} \leq \cdots$.
\square Given some fixed $r \in \mathbb{R}$ and j, we want a bound:

$$
\mathbb{P}\left(\left|\lambda_{j}-r\right|<\exp \left(-n^{1-\varepsilon}\right)\right)<n^{-\delta_{0}}
$$

for some $\delta_{0}>0$.

Wegner-Type Estimate

Arguments from the proof of the Wegner-type estimate:
$■$ Let $Q_{n}=\left\{a \in \mathbb{Z}^{d}:\|a\|_{\infty} \leq n\right\}$.
\square For $-\Delta+V$ on Q_{n} with Dirichlet boundary condition, let its eigenvalues be $\lambda_{1} \leq \lambda_{2} \leq \cdots$.
\square Given some fixed $r \in \mathbb{R}$ and j, we want a bound:

$$
\mathbb{P}\left(\left|\lambda_{j}-r\right|<\exp \left(-n^{1-\varepsilon}\right)\right)<n^{-\delta_{0}}
$$

for some $\delta_{0}>0$.
\square Consider the collection of potential:

$$
\mathcal{A}:=\left\{V:\left|\lambda_{j}-r\right|<\exp \left(-n^{1-\varepsilon}\right)\right\} \subset\{0,1\}^{Q_{n}}
$$

It is equivalent to show that $|\mathcal{A}| \leq 2^{(2 n+1)^{d}} n^{-\delta_{0}}$.

Wegner-Type Estimate

Following Bourgain and Kenig, 2005, we wish to control $|\mathcal{A}|$ using variation arguments and Sperner's Theorem.

Theorem (Sperner's Theorem)

A family of sets is called a Sperner family, if none of them is a strict subset of another. If \mathcal{M} is a Sperner family of subsets of $\{1,2, \cdots, m\}$, then we have

$$
|\mathcal{M}| \leq\binom{ m}{\left\lfloor\frac{m}{2}\right\rfloor}
$$

Wegner-Type Estimate

Following Bourgain and Kenig, 2005, we wish to control $|\mathcal{A}|$ using variation arguments and Sperner's Theorem.

Theorem (Sperner's Theorem)

A family of sets is called a Sperner family, if none of them is a strict subset of another. If \mathcal{M} is a Sperner family of subsets of $\{1,2, \cdots, m\}$, then we have

$$
|\mathcal{M}| \leq\binom{ m}{\left\lfloor\frac{m}{2}\right\rfloor}
$$

If $|\mathcal{A}|>\binom{m}{\left\lfloor\frac{m}{2}\right\rfloor}$ for $m=(2 n+1)^{d}$, there are two different potentials $V_{1} \leq V_{2} \in \mathcal{A}$, such that for both $-\Delta+V_{1}$ and $-\Delta+V_{2}$, we have $\left|\lambda_{j}=r\right|<\exp \left(-n^{1-\varepsilon}\right)$.
By a variation argument, this is not possible if $\left|u_{j}(a)\right|$ is not too small for some a with $V_{1}(a) \neq V_{2}(a)$.

Wegner-Type Estimate: Quantitative Unique Continuation Principle

For \mathbb{R}^{d}, one can show that the eigenfunction cannot be too small anywhere.

Wegner-Type Estimate: Quantitative Unique Continuation Principle

For \mathbb{R}^{d}, one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique

 continuation principle on \mathbb{R}^{d})Suppose $u \in C^{2}\left(\mathbb{R}^{d}\right),|\Delta u(a)| \leq C|u(a)| \leq C^{2}|u(\mathbf{0})|$ for any $a \in B_{r}$. Then

$$
\int_{B_{1}(a)}|u(x)| d x \geq|u(0)| \exp \left(-c|a|^{\frac{4}{3}} \log (|a|)\right)
$$

for any $a \in B_{r / 2}$.
Thus $|\mathcal{A}| \leq\binom{ m}{\left\lfloor\frac{m}{2}\right\rfloor}$ for $m=(2 n+1)^{d}$.

Wegner-Type Estimate: Quantitative Unique Continuation Principle

For \mathbb{R}^{d}, one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique

 continuation principle on \mathbb{R}^{d})Suppose $u \in C^{2}\left(\mathbb{R}^{d}\right),|\Delta u(a)| \leq C|u(a)| \leq C^{2}|u(\mathbf{0})|$ for any $a \in B_{r}$. Then

$$
\int_{B_{1}(a)}|u(x)| d x \geq|u(\mathbf{0})| \exp \left(-c|a|^{\frac{4}{3}} \log (|a|)\right)
$$

for any $a \in B_{r / 2}$.
Thus $|\mathcal{A}| \leq\binom{ m}{\left\lfloor\frac{m}{2}\right\rfloor}$ for $m=(2 n+1)^{d}$.
On \mathbb{Z}^{d}, such u can be supported on a "lower dimension" set.

Wegner-Type Estimate: Quantitative Unique Continuation Principle

For \mathbb{R}^{d}, one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique

 continuation principle on \mathbb{R}^{d})Suppose $u \in C^{2}\left(\mathbb{R}^{d}\right),|\Delta u(a)| \leq C|u(a)| \leq C^{2}|u(\mathbf{0})|$ for any $a \in B_{r}$. Then

$$
\int_{B_{1}(a)}|u(x)| d x \geq|u(\mathbf{0})| \exp \left(-c|a|^{\frac{4}{3}} \log (|a|)\right)
$$

for any $a \in B_{r / 2}$.
Thus $|\mathcal{A}| \leq\binom{ m}{\left.\frac{m}{2}\right\rfloor}$ for $m=(2 n+1)^{d}$.
On \mathbb{Z}^{d}, such u can be supported on a "lower dimension" set. Example: on \mathbb{Z}^{3}, let $u:(x, y, z) \mapsto(-1)^{x} \exp (s z) \mathbb{1}_{x=y}$, where $s \in \mathbb{R}_{+}$is the constant satisfying $\exp (s)+\exp (-s)=6$.
One can check that $\Delta u=0$.

Wegner-Type Estimate: Quantitative Unique Continuation Principle

For \mathbb{R}^{d}, one can show that the eigenfunction cannot be too small anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique

 continuation principle on \mathbb{R}^{d})Suppose $u \in C^{2}\left(\mathbb{R}^{d}\right),|\Delta u(a)| \leq C|u(a)| \leq C^{2}|u(\mathbf{0})|$ for any $a \in B_{r}$. Then

$$
\int_{B_{1}(a)}|u(x)| d x \geq|u(\mathbf{0})| \exp \left(-c|a|^{\frac{4}{3}} \log (|a|)\right)
$$

for any $a \in B_{r / 2}$.
Thus $|\mathcal{A}| \leq\binom{ m}{\left\lfloor\frac{m}{2}\right\rfloor}$ for $m=(2 n+1)^{d}$.
On \mathbb{Z}^{d}, such u can be supported on a "lower dimension" set. Example: on \mathbb{Z}^{3}, let $u:(x, y, z) \mapsto(-1)^{x} \exp (s z) \mathbb{1}_{x=y}$, where $s \in \mathbb{R}_{+}$is the constant satisfying $\exp (s)+\exp (-s)=6$.
One can check that $\Delta u=0$.
We need a discrete unique continuation principle (DUCP).

Wegner-Type Estimate: Generalized Sperner's Theorem

As the eigenfunction can be very small except for a small set, we need a generalized Sperner's Theorem.

Wegner-Type Estimate: Generalized Sperner's Theorem

As the eigenfunction can be very small except for a small set, we need a generalized Sperner's Theorem.

Theorem (Ding and Smart, 2019)

Let $m^{\prime}<m \in \mathbb{Z}_{+}$, and \mathcal{M} be a family of subsets of $\{1,2, \cdots, m\}$. Suppose \mathcal{M} satisfies that, for every $A \in \mathcal{M}$, there is a set $B(A) \subset\{1,2, \cdots, m\} \backslash A$ such that $|B(A)| \geq m^{\prime}$, and $A \subset A^{\prime} \in \mathcal{M}$ implies $A^{\prime} \cap B(A)=\emptyset$. Then we have

$$
|\mathcal{M}| \leq 2^{m} m^{\frac{1}{2}} m^{-1}
$$

Wegner-Type Estimate: Generalized Sperner's Theorem

As the eigenfunction can be very small except for a small set, we need a generalized Sperner's Theorem.

Theorem (Ding and Smart, 2019)

Let $m^{\prime}<m \in \mathbb{Z}_{+}$, and \mathcal{M} be a family of subsets of $\{1,2, \cdots, m\}$. Suppose \mathcal{M} satisfies that, for every $A \in \mathcal{M}$, there is a set $B(A) \subset\{1,2, \cdots, m\} \backslash A$ such that $|B(A)| \geq m^{\prime}$, and $A \subset A^{\prime} \in \mathcal{M}$ implies $A^{\prime} \cap B(A)=\emptyset$. Then we have

$$
|\mathcal{M}| \leq 2^{m} m^{\frac{1}{2}} m^{\prime-1}
$$

Note that in order to have a nontrivial bound for $|\mathcal{M}|$, one only needs $m^{\prime}>m^{\frac{1}{2}}$.

Wegner-Type Estimate: Generalized Sperner's Theorem

As the eigenfunction can be very small except for a small set, we need a generalized Sperner's Theorem.

Theorem (Ding and Smart, 2019)

Let $m^{\prime}<m \in \mathbb{Z}_{+}$, and \mathcal{M} be a family of subsets of $\{1,2, \cdots, m\}$. Suppose \mathcal{M} satisfies that, for every $A \in \mathcal{M}$, there is a set $B(A) \subset\{1,2, \cdots, m\} \backslash A$ such that $|B(A)| \geq m^{\prime}$, and $A \subset A^{\prime} \in \mathcal{M}$ implies $A^{\prime} \cap B(A)=\emptyset$. Then we have

$$
|\mathcal{M}| \leq 2^{m} m^{\frac{1}{2}} m^{\prime-1} .
$$

Note that in order to have a nontrivial bound for $|\mathcal{M}|$, one only needs $m^{\prime}>m^{\frac{1}{2}}$.

Each potential $V \in \mathcal{A}$ corresponds to an $A_{V} \subset Q_{n}$, and we let $B\left(A_{V}\right):=\left\{a \in Q_{n} \backslash A_{v}:\left|u_{j}(a)\right|>C^{-n}\left\|u_{j}\right\| \ell_{\infty}\left(Q_{n}\right)\right\} \subset Q_{n} \backslash A_{V}$.

Wegner-Type Estimate: Generalized Sperner's Theorem

As the eigenfunction can be very small except for a small set, we need a generalized Sperner's Theorem.

Theorem (Ding and Smart, 2019)

Let $m^{\prime}<m \in \mathbb{Z}_{+}$, and \mathcal{M} be a family of subsets of $\{1,2, \cdots, m\}$. Suppose \mathcal{M} satisfies that, for every $A \in \mathcal{M}$, there is a set $B(A) \subset\{1,2, \cdots, m\} \backslash A$ such that $|B(A)| \geq m^{\prime}$, and $A \subset A^{\prime} \in \mathcal{M}$ implies $A^{\prime} \cap B(A)=\emptyset$. Then we have

$$
|\mathcal{M}| \leq 2^{m} m^{\frac{1}{2}} m^{\prime-1} .
$$

Note that in order to have a nontrivial bound for $|\mathcal{M}|$, one only needs $m^{\prime}>m^{\frac{1}{2}}$.

Each potential $V \in \mathcal{A}$ corresponds to an $A_{V} \subset Q_{n}$, and we let $B\left(A_{V}\right):=\left\{a \in Q_{n} \backslash A_{v}:\left|u_{j}(a)\right|>C^{-n}\left\|u_{j}\right\| \ell_{\infty}\left(Q_{n}\right)\right\} \subset Q_{n} \backslash A_{V}$. We wish to show that each $\left|B\left(A_{V}\right)\right|>n^{\frac{d}{2}+\delta_{0}}$.

2D Discrete Unique Continuation Principle

The case where there is no potential:
Theorem (Buhovsky, Logunov, Malinnikova, and Sodin, 2017)
For $d=2$, there exist universal constants $C, \varepsilon>0$ such that the following holds. Suppose $u: Q_{n} \rightarrow \mathbb{R}$ satisfy $\Delta u=0$ in Q_{n} and $|u(0)|=1$, then

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq C^{-n}\right\}\right| \geq \varepsilon n^{2}
$$

2D Discrete Unique Continuation Principle

The case where there is no potential:

Theorem (Buhovsky, Logunov, Malinnikova, and Sodin, 2017)

For $d=2$, there exist universal constants $C, \varepsilon>0$ such that the following holds. Suppose $u: Q_{n} \rightarrow \mathbb{R}$ satisfy $\Delta u=0$ in Q_{n} and $|u(0)|=1$, then

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq C^{-n}\right\}\right| \geq \varepsilon n^{2} .
$$

This is not true for arbitrary potential.
Consider $u:(x, y) \mapsto(-1)^{x} \mathbb{1}_{x=y}$, then we have $\Delta u=-4 u$.

2D Discrete Unique Continuation Principle

However, inspired by their method, a probabilistic version of 2D DUCP is proved.

Theorem (Ding and Smart, 2019)

There are constants $\alpha>1>\varepsilon>0$ such that, if $\lambda \in \mathbb{R}$ and $n>\alpha$, then $\mathbb{P}(\mathcal{E}) \geq 1-\exp \left(-\varepsilon n^{\frac{1}{4}}\right)$, where \mathcal{E} denotes the event that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp (-\alpha n \log (n))|u(\mathbf{0})|\right\}\right| \geq \varepsilon n^{\frac{3}{2}} \log (n)^{-1}
$$

holds whenever $\left|\lambda-\lambda^{\prime}\right|<\exp \left(-\alpha(n \log (n))^{\frac{1}{2}}\right)$, and $(-\Delta+V) u=\lambda^{\prime} u$ in Q_{n}.

Discrete unique continuation principle on \mathbb{Z}^{3}

Unlike the 2D lattice, on the 3D lattice, the desired DUCP holds for any potential, rather than just for typical ones.

Theorem (Li and Z., 2019)

There exists constant $p>\frac{3}{2}$ such that the following holds. For each $K>0$, there are constants $C_{0}, C_{1}>0$, such that for any $n \in \mathbb{Z}_{+}$, and functions $u, V: \mathbb{Z}^{3} \rightarrow \mathbb{R}$ with $\Delta u=V u$, and $\|V\|_{\infty} \leq K$ in Q_{n}, we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n\right)|u(\mathbf{0})|\right\}\right| \geq C_{1} n^{p}
$$

Following the framework of Bourgain-Kenig and Ding-Smart, this implies 3D Anderson-Bernoulli localization.

3D Discrete Unique Continuation Principle

We first prove a "small scale DUCP".

Theorem (Li and Z., small scale DUCP)

For each $K>0$, there exist C_{0}, C_{1} relying only on K, such that for any $n \in \mathbb{Z}_{+}$and functions $u, V: \mathbb{Z}^{3} \rightarrow \mathbb{R}$ with $\Delta u=V u$, and $\|V\|_{\infty} \leq K$ in Q_{n}, we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(\mathbf{0})|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1} .
$$

3D Discrete Unique Continuation Principle

We first prove a "small scale DUCP".

Theorem (Li and Z., small scale DUCP)

For each $K>0$, there exist C_{0}, C_{1} relying only on K, such that for any $n \in \mathbb{Z}_{+}$and functions $u, V: \mathbb{Z}^{3} \rightarrow \mathbb{R}$ with $\Delta u=V u$, and $\|V\|_{\infty} \leq K$ in Q_{n}, we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(\mathbf{0})|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1} .
$$

Note that the power of n^{2} cannot be improved, by the example $u:(x, y, z) \mapsto(-1)^{x} \mathbb{1}_{x=y}$.

Ideas of the Small Scale DUCP

The proof is based on geometric arguments on \mathbb{Z}^{3}.

Ideas of the Small Scale DUCP

The proof is based on geometric arguments on \mathbb{Z}^{3}.
We consider four collections of planes in \mathbb{R}^{3}.

Definition

Let $\mathbf{e}_{1}:=(1,0,0), \mathbf{e}_{2}:=(0,1,0)$, and $\mathbf{e}_{3}:=(0,0,1)$ to be the standard basis of \mathbb{R}^{3}, and denote $\lambda_{1}:=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}$, $\lambda_{2}:=-\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}, \lambda_{3}:=\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}, \lambda_{4}:=-\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}$. For any $k \in \mathbb{Z}$, and $\tau \in\{1,2,3,4\}$, denote $\mathcal{P}_{\tau, k}:=\left\{\boldsymbol{a} \in \mathbb{R}^{3}: \boldsymbol{a} \cdot \lambda_{\tau}=k\right\}$.

The proof is based on geometric arguments on \mathbb{Z}^{3}.
We consider four collections of planes in \mathbb{R}^{3}.

Definition

Let $\mathbf{e}_{1}:=(1,0,0), \mathbf{e}_{2}:=(0,1,0)$, and $\mathbf{e}_{3}:=(0,0,1)$ to be the
standard basis of \mathbb{R}^{3}, and denote $\lambda_{1}:=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}$,
$\lambda_{2}:=-\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}, \lambda_{3}:=\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}, \lambda_{4}:=-\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}$.
For any $k \in \mathbb{Z}$, and $\tau \in\{1,2,3,4\}$, denote
$\mathcal{P}_{\tau, k}:=\left\{\boldsymbol{a} \in \mathbb{R}^{3}: \boldsymbol{a} \cdot \lambda_{\tau}=k\right\}$.
We note that the intersection of \mathbb{Z}^{3} with each of these planes is a 2D triangular lattice.

Ideas of the Small Scale DUCP: 2D Triangular Lattice

Using arguments similar to that of Buhovsky, Logunov, Malinnikova, and Sodin, we get estimates on the 2D triangular lattice.

Theorem (Li and Z., 2D triangular lattice estimate)

There exist constants $C, c>0$, such that for any positive integer n and any function $u: \Lambda \rightarrow \mathbb{R}$, if
$|u(a)+u(a-\xi)+u(a+\eta)|<C^{-n}|u(\mathbf{0})|$ for any $a \in \Lambda_{n}$, then

$$
\left|\left\{a \in \Lambda_{n}:|u(a)|>C^{-n}|u(\mathbf{0})|\right\}\right|>c n^{2}
$$

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$.

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$.
Step 1. On $\mathcal{P}_{1,0}=\{(x, y, z): x+y+z=0\}$, find a sequence of triangles T_{0}, T_{1}, \cdots.

For a_{0}, a_{1}, \cdots being the middle points of one side of T_{0}, T_{1}, \cdots, we have $\left|u\left(a^{\prime}\right)\right|<C^{-n}\left|u\left(a_{i}\right)\right|$ for a^{\prime} inside T_{i}.

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$. Step 2. Using each T_{i} as basement, construct a pyramid.

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$. Step 2. Using each T_{i} as basement, construct a pyramid.

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$. Step 2. Using each T_{i} as basement, construct a pyramid.

- Each face of the boundary of the pyramid is a subset of some plane $\mathcal{P}_{\tau, k}$.

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$. Step 2. Using each T_{i} as basement, construct a pyramid.

■ Each face of the boundary of the pyramid is a subset of some plane $\mathcal{P}_{\tau, k}$.
\square By construction we ensure that $|u|<C^{-n}\left|u\left(a_{i}\right)\right|$ inside the pyramid, while on the boundary there are points with large $|u|$.

Ideas of the Small Scale DUCP: Decomposition

Next we decompose \mathbb{Z}^{3} into triangular lattice in $\mathcal{P}_{\tau, k}$. Step 2. Using each T_{i} as basement, construct a pyramid.

■ Each face of the boundary of the pyramid is a subset of some plane $\mathcal{P}_{\tau, k}$.
■ By construction we ensure that $|u|<C^{-n}\left|u\left(a_{i}\right)\right|$ inside the pyramid, while on the boundary there are points with large $|u|$.

- Apply the estimates on 2D triangular lattice to the faces.

3D Discrete Unique Continuation Principle

Now we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(0)|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1}
$$

3D Discrete Unique Continuation Principle

Now we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(\mathbf{0})|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1} .
$$

To finish the proof of DUCP, we find many copies of $Q_{n^{1 / 3}}$ inside Q_{n}, and apply small scale DUCP to each of them.

3D Discrete Unique Continuation Principle

Now we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(0)|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1} .
$$

To finish the proof of DUCP, we find many copies of $Q_{n^{1 / 3}}$ inside Q_{n}, and apply small scale DUCP to each of them.

Theorem (Large Scale DUCP)

There exist universal constants β and $\alpha>\frac{5}{4}$ such that for any positive integers $m \leq n$ and any positive real K, the following is true. For any $u, V: \mathbb{Z}^{3} \rightarrow \mathbb{R}$ such that $\Delta u=V u$ and $\|V\|_{\infty} \leq K$ in Q_{n}, we can find a subset $\Theta \subset Q_{n}$ with $|\Theta| \geq \beta\left(\frac{n}{m}\right)^{\alpha}$, such that

$$
\begin{aligned}
& \text { ■ }|u(b)| \geq(K+11)^{-12 n}|u(0)| \text { for each } b \in \Theta \text {. } \\
& \text { в } Q_{m}(b) \bigcap Q_{m}\left(b^{\prime}\right)=\emptyset \text { for } b, b^{\prime} \in \Theta, b \neq b^{\prime} . \\
& \text {. } b) \subseteq Q_{n} \text { for each } b \in \Theta \text {. }
\end{aligned}
$$

3D Discrete Unique Continuation Principle

Now we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(\mathbf{0})|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1}
$$

To finish the proof of DUCP, we find many copies of $Q_{n^{1 / 3}}$ inside Q_{n}, and apply small scale DUCP to each of them.

Theorem (Large Scale DUCP)

There exist universal constants β and $\alpha>\frac{5}{4}$ such that for any positive integers $m \leq n$ and any positive real K, the following is true. For any $u, V: \mathbb{Z}^{3} \rightarrow \mathbb{R}$ such that $\Delta u=V u$ and $\|V\|_{\infty} \leq K$ in Q_{n}, we can find a subset $\Theta \subset Q_{n}$ with $|\Theta| \geq \beta\left(\frac{n}{m}\right)^{\alpha}$, such that

$$
\begin{aligned}
& 1|u(b)| \geq(K+11)^{-12 n}|u(0)| \text { for each } b \in \Theta \text {. } \\
& \text { ® } Q_{m}(b) \bigcap Q_{m}\left(b^{\prime}\right)=\emptyset \text { for } b, b^{\prime} \in \Theta, b \neq b^{\prime} . \\
& Q_{m}(b) \subseteq Q_{n} \text { for each } b \in \Theta \text {. }
\end{aligned}
$$

We take $m=n^{1 / 3}$, and apply small scale DUCP to each $Q_{n^{1 / 3}}(b)$.

3D Discrete Unique Continuation Principle

Now we have that

$$
\left|\left\{a \in Q_{n}:|u(a)| \geq \exp \left(-C_{0} n^{3}\right)|u(\mathbf{0})|\right\}\right| \geq C_{1} n^{2}(\log (n))^{-1}
$$

To finish the proof of DUCP, we find many copies of $Q_{n^{1 / 3}}$ inside Q_{n}, and apply small scale DUCP to each of them.

Theorem (Large Scale DUCP)

There exist universal constants β and $\alpha>\frac{5}{4}$ such that for any positive integers $m \leq n$ and any positive real K, the following is true. For any $u, V: \mathbb{Z}^{3} \rightarrow \mathbb{R}$ such that $\Delta u=V u$ and $\|V\|_{\infty} \leq K$ in Q_{n}, we can find a subset $\Theta \subset Q_{n}$ with $|\Theta| \geq \beta\left(\frac{n}{m}\right)^{\alpha}$, such that

$$
\begin{aligned}
& \text { ■ }|u(b)| \geq(K+11)^{-12 n}|u(0)| \text { for each } b \in \Theta \text {. } \\
& Q_{m}(b) \bigcap Q_{m}\left(b^{\prime}\right)=\emptyset \text { for } b, b^{\prime} \in \Theta, b \neq b^{\prime} . \\
& Q_{m}(b) \subseteq Q_{n} \text { for each } b \in \Theta \text {. }
\end{aligned}
$$

We take $m=n^{1 / 3}$, and apply small scale DUCP to each $Q_{n^{1 / 3}}(b)$. Note that we cannot directly get DUCP by taking $m=1$.

Ideas of the Large Scale DUCP: Cone Property

Fix m and do induction on n :
find a few $b \in Q_{n},|u(b)| \geq(K+11)^{-2 n}|u(0)|$, and are far away from each other; then apply induction hypothesis to cubes centered at each b.

Ideas of the Large Scale DUCP: Cone Property

Fix m and do induction on n :
find a few $b \in Q_{n},|u(b)| \geq(K+11)^{-2 n}|u(0)|$, and are far away from each other; then apply induction hypothesis to cubes centered at each b.

Lemma (One Step Cone Property)

For any $a \in \mathbb{Z}^{3}, s \in\left\{ \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}, \pm \mathbf{e}_{3}\right\}$, we have

$$
\max _{b \in a+s+\left\{\mathbf{0}, \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}, \pm \mathbf{e}_{3}\right\} \backslash\{a\}}|u(b)| \geq(K+11)^{-1}|u(a)| .
$$

Ideas of the Large Scale DUCP: Cone Property

Lemma (One Step Cone Property)

For any $a \in \mathbb{Z}^{3}, s \in\left\{ \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}, \pm \mathbf{e}_{3}\right\}$, we have

$$
\max _{b \in a+s+\left\{0, \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}, \pm \mathbf{e}_{3}\right\} \backslash\{a\}}|u(b)| \geq(K+11)^{-1}|u(a)| .
$$

Keep walking in one of the $2 d=6$ directions, we can find a chain in a cone.

Thank you!

Bourgain，J．，\＆Kenig，C．（2005）．On localization in the continuous Anderson－Bernoulli model in higher dimension．Invent．Math．161（2），389－426．
Buhovsky，L．，Logunov，A．，Malinnikova，E．，\＆Sodin，M．（2017）．A discrete harmonic function bounded on a large portion of \mathbb{Z}^{2} is constant．arXiv：1712．07902．
0
Carmona，R．，Klein，A．，\＆Martinelli，F．（1987）．Anderson localization for bernoulli and other singular potentials．Comm．Math．Phys．108（1），41－66．
T
Ding，J．，\＆Smart，C．（2019）．Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice．Invent．math．
Fröhlich，J．，Martinelli，F．，Scoppola，E．，\＆Spencer，T．（1985）．Constructive proof of localization in the Anderson tight binding model．Comm．Math．Phys．101（1），21－ 46.

园
Fröhlich，J．，\＆Spencer，T．（1983）．Absence of diffusion in the Anderson tight binding model for large disorder or low energy．Comm．Math．Phys．88（2），151－184．

Kunz，H．，\＆Souillard，B．（1980）．Sur le spectre des opérateurs aux différences finies aléatoires．Comm．Math．Phys．78（2），201－246．
Li，L．，\＆Z．（2019）．Anderson－bernoulli localization on the 3d lattice and discrete unique continuation principle．arXiv：1906．04350．

䬎
Wegner，F．（1981）．Bounds on the density of states in disordered systems．Zeitschrift für Physik B Condensed Matter，44（1），9－15．

