Cutoff profile of the colored ASEP arXiv:2208.13383

Lingfu Zhang Department of Statistics and the Miller Institute, UC Berkeley

Berkeley Probability Seminar

Oct 12, 2022

Agenda

The model of (colored) ASEP

- Background: known results on mixing/cutoff
- >Intuition: why GOE Tracy-Widom cutoff profile
- The strategy: finishing times via coupling, symmetry via Hecke algebra
- >Further questions

The model

Asymmetric Simple Exclusion Process (ASEP) with colors:

--- a (continuous time) Markov chain on S_N

Also called biased card shuffling or random Metropolis scan.

Projections to ordinary ASEP

Ordinary ASEP (without colors): particles and holes, segment or \mathbb{Z}

Rate 1

Rate q

Colored ASEP can be recovered from all projections.

Stationary: Mallows measure

For any
$$\omega \in S_N$$
,

$$M_N(\omega) = q^{\kappa(\omega)} \prod_{i=1}^N \frac{1-q}{1-q^i}$$
where $\kappa(\omega) = |\{1 \le i < j \le N : \omega(i) < \omega(j)\}$
Ground state: $\omega(i) = N + 1 - i$

Ordinary ASEP: for any $\omega \in \{0, 1\}^N$ with $\sum_{i=1}^N \omega(i) = M$, (i.e., M particles) $M_N^M(\omega) = q^{\kappa(\omega)} \frac{\prod_{i=1}^M (1-q^i) \prod_{i=1}^{N-M} (1-q^i)}{\prod_{i=1}^N (1-q^i)}$ where $\kappa(\omega) = |\{1 \le i < j \le N : \omega(i) = 1, \omega(j) = 0\}|$

Some previous works

- Diaconis-Ram, 2000 (random Metropolis scan)
- Benjamini-Berger-Hoffman-Mossel, 2002
 - Mixing time is order N
- Labbé-Lacoin, 2016 cutoff for colored/ordinary ASEP (via hydrodynamics) speculated N^{1/3} cutoff window, and KPZ-related cutoff profile Total Variation dist at (2 − ε)N/(1 − q) → 1 Total Variation dist at (2 + ε)N/(1 − q) → 0
 Bufetov-Nejjar, 2020 ordinary ASEP: N^{1/3} cutoff window and GUE Tracy-Widom profile
 Conjecture: colored ASEP also has N^{1/3} cutoff window, with GOE Tracy-Widom profile

Special case: Totally Asymmetric Simple Exclusion Process (TASEP) (q = 0)

Mallows measure degenerates into an absorbing state:

 $\omega(i)=N+1-i$

Total variation mixing \implies absorbing time

Ordinary TASEP: corresponds to a growing surface

Initially: M particles at the left, N – M holes at the right

Absorbing state: N – M holes at the left, M particles at the right

Ordinary TASEP: corresponds to a growing surface

Last Passage Percolation with i.i.d. Exp(1) weights.

Known (Johansson, 1999, via RSK)

$$if \frac{M}{N} \to y \in (0,1),$$

$$\frac{L_{N-M,M} - N(1 + 2\sqrt{y(1-y)})}{N^{1/3}(1 + 2\sqrt{y(1-y)})^{2/3}(y(1-y))^{-1/6}} \to GUE \text{ Tracy-Widom}$$

→ Ordinary TASEP absorbing time is linear in N, plus $N^{1/3}$ times GUE Tracy-Widom

Colored TASEP (Oriented Swap Process, Angel-Holroyd-Romik, 2008)

Using projections:

finishing time $F_{N,M}$ for each particle has $N^{1/3}$ Tracy-Widom GUE

Question: absorbing time? $A_N = \max_{1 \le M \le N} F_{N,M}$

Bufetov-Gorin-Romik, 2020

$$\frac{A_N - 2N}{2^{1/3}N^{1/3}} \to \text{GOE Tracy-Widom}$$

Why
$$N^{1/3}$$
 and GOE Tracy-Widom?

Colored TASEP (Oriented Swap Process, Angel-Holroyd-Romik, 2008) Bufetov-Gorin-Romik, 2020 $\frac{A_N - 2N}{2^{1/3}N^{1/3}} \rightarrow$ GOE Tracy-Widom

Note:
$$A_N = \max_{1 \le M \le N} F_{N,M}$$
, and each $F_{N,M} = L_{N-M,M}$ in distribution.

Conjecture:

$$\{F_{N,M}\}_{M=1}^{N} = \{L_{N-M,M}\}_{M=1}^{N}, \text{ so } A_{N} = \max_{1 \le M \le N} L_{N-M,M}$$
(Z., 2021) (Bufetov-Gorin-Romik, 2020)

Follow non-trivial shift-invariance (Borodin-Gorin-Wheeler, 2019, Galashin, 2020)

TASEP absorbing time
distribution

ASEP cutoff profile

Ordinary (colorless)	GUE Tracy-Widom (Angel-Holroyd-Romik, 2008, using LPP results from Johansson, 1999)	GUE Tracy-Widom (Bufetov-Nejjar, 2020: Hecke algebra, coupling, step initial ASEP results by Tracy-Widom, 2008)
Colored	GOE Tracy-Widom (shift invariance in Bufetov-Gorin-Romik, 2020, using LPP results from Sasamoto, 2005)	Natural guess: GOE Tracy-Widom (Z. 2022)

Theorem. (Z. 2022) Let $W_N^{\lambda}(t)$ denote the law of the S_N colored ASEP with initial configuration λ at time t, then $\max_{\lambda \in S_N} \|W_N^{\lambda} (2(1-q)^{-1}(N+\tau N^{1/3})) - M_N\|_{--} \to 1 - F_{GOE}(2^{2/3}\tau)$

The strategy

♦ Observation: still suffices to consider the 'finishing times': Let $F_{N,M}^*$ be the first time when all numbers $\leq M$ are at locations > N - M. Then total-variation mixing happens roughly at $\max_{1 \leq M \leq N} F_{N,M}^*$. Why?

i. Given $t < \max_{1 \le M \le N} F_{N,M}^*$, the configuration at time t is 'unlike' the (stationary) Mallows measure; so

$$\left\| W_N^{Id}(t) - M_N \right\|_{TV} \ge \mathbb{P}\left[t < \max_{1 \le M \le N} F_{N,M}^* \right]$$

ii. Take the basic coupling (synchronize two-types of alarms respectively) with the stationary process Since time F^* the $\leq M$ projections are

Since time $F_{N,M}^*$, the $\leq M$ projections are the same. Since time $\max_{1 \leq M \leq N} F_{N,M}^*$, all the same.

The strategy: max $F_{N,M}^*$ $1 \le M \le N$

- 1. Truncation: a segment versus $\ensuremath{\mathbb{Z}}$
- 2. Shift-invariance Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021
- 3. Use known LPP/TASEP or ASEP asymptotic results Existing (Quastel-Sarkar, 2020)

For TASEP: 1 is straightforward Basic coupling between segment and \mathbb{Z}

 $F_{N,M}$ = time when there are $\ge M$ numbers $\le M$ to the right of location N - M ('truncation operator' in Angel-Holroyd-Romik, 2008)

The strategy: $\max_{1 \le M \le N} F_{N,M}^*$

- 1. Truncation: a segment versus $\ensuremath{\mathbb{Z}}$
- 2. Shift-invariance Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021
- 3. Use known LPP/TASEP or ASEP asymptotic results Existing (Quastel-Sarkar, 2020) For TASEP: 1 is straightforward

 $F_{N,M}$ = time when there are $\ge M$ numbers, from $\le M$ to > N - M(for both segment and \mathbb{Z} models) By shift-invariance, consider the time when there are $\ge M$ numbers, from ≤ 0 to > N - 2M**This is on one ordinary step-initial TASEP!**

The strategy: max $F_{N,M}^*$ $1 \le M \le N$

- 1. Truncation: a segment versus $\ensuremath{\mathbb{Z}}$
- 2. Shift-invariance Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021
- 3. Use known LPP/TASEP or ASEP asymptotic results Existing (Quastel-Sarkar, 2020) For ASEP: 1 is the main task

No exact correspondence (surface up and down) One side holds: segment surface $\leq \mathbb{Z}$ surface

Idea: should still be roughly the same (suffices to prove the other side) Ý Compare both surfaces

Hecke algebra
$$S_N$$
 embeds into S_N , for $N < N'$ •Basis: $\{T_{\omega}\}_{\omega \in S_N}$ Also used in Bufetov-Nejjar, 2020
but in a quite different way•Multiplications: $T_{\sigma}T_{\omega} = \begin{cases} T_{\sigma\omega} \\ (1-q)T_{\omega} + qT_{\sigma\omega} \end{cases}$ Also used in Bufetov-Nejjar, 2020
but in a quite different way σ is a nearest neighbor swap;
depending on whether $\kappa(\sigma\omega) = \kappa(\omega) - 1$ or $\kappa(\sigma\omega) = \kappa(\omega) + 1$ •Each $\sum_{\omega \in S_N} p_{\omega} T_{\omega}$ (for $\sum_{\omega \in S_N} p_{\omega} = 1$) encodes a measure•ASEP evolution $e^{t \sum_i (\sigma_i - Id)} \to \mathcal{M}_N$ (Mallows element) as $t \to \infty$ •Involution i: $T_{\omega} \mapsto T_{\omega^{-1}}$. $i(i(A)) = A$, $i(AB) = i(B)i(A)$,
and $i(e^{t \sum_i (\sigma_i - Id)}) = e^{t \sum_i (\sigma_i - Id)}$, $i(\mathcal{M}_N) = \mathcal{M}_N$

$$\ln \mathcal{M}_{[-X,M]} e^{t \sum_{i=-X}^{X} (\sigma_i - Id)}$$

$- \underbrace{- \underbrace{-X + M}}_{M}$

 $\# \bigcirc \text{at locations} \leq -X + M \text{ is } \ll M \text{ while } \# \bigcirc \text{at locations} \leq M \text{ is } \gg M$

(exponentially) unlikely by Mallows property!

- 1. Truncation: a segment versus \mathbb{Z} $F_{N,M}^*$ =Time when $\geq M$ numbers, from $\leq M$ to >N-M
- **2.** Shift-invariance =Time when $\ge M$ numbers, from ≤ 0 to >N-2MExisting from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021
- 3. Use known LPP/TASEP or ASEP asymptotic results Existing (Quastel-Sarkar, 2020) $\max_{1 \le M \le N} F_{N,M}^* = \text{ASEP point-to-line}$

Symmetric case? (q = 1)

	TASEP absorbing time distribution	ASEP cutoff profile	SSEP cutoff profile
Ordinary (colorless)	GUE Tracy-Widom (Angel-Holroyd-Romik, 2008)	GUE Tracy-Widom (Bufetov-Nejjar, 2020)	N ² log(N) mixing time, N ² Gaussian cutoff (Lacoin, 2015)
Colored	GOE Tracy-Widom (Bufetov-Gorin-Romik, 2020)	GOE Tracy-Widom (Z. 2022)	Unknown also called <i>adjacent card shuffling</i> ; cutoff known (Lacoin, 2013)

Further questions

ASEP version of the Oriented Swap Process?

Aggarwal-Corwin-Ghosal, 2022 could be useful

Further questions

ASEP with reservoirs (open boudary)?

Model quantum spin chain Mixing is largely open!

Thank you!