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Agenda
The model of (colored) ASEP
Background: known results on mixing/cutoff
Intuition: why GOE Tracy-Widom cutoff profile
The strategy: finishing times via coupling, symmetry 
via Hecke algebra
Further questions



The model
Asymmetric Simple Exclusion Process (ASEP) with colors:
--- a (continuous time) Markov chain on 𝑆𝑆𝑁𝑁
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Rate 1 for 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙

Rate 𝑞𝑞 for 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙
(0 ≤ 𝑞𝑞 < 1)
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Also called biased card shuffling or random Metropolis scan.



Projections to ordinary ASEP
Ordinary ASEP (without colors): particles and holes, segment or ℤ

Rate 1

Projection for colors ≤ 6

7 4 3 9 5 82 6 1

Colored ASEP can be recovered from all projections.

Rate 𝑞𝑞

Projection for colors ≤ 5



Stationary: Mallows measure
For any 𝜔𝜔 ∈ 𝑆𝑆𝑁𝑁, 

where    𝜅𝜅 𝜔𝜔 = 1 ≤ 𝑟𝑟 < 𝑗𝑗 ≤ 𝑁𝑁: 𝜔𝜔 𝑟𝑟 < 𝜔𝜔(𝑗𝑗)

M𝑁𝑁(𝜔𝜔) = 𝑞𝑞𝜅𝜅 𝜔𝜔 �
𝑖𝑖=1

𝑁𝑁
1 − 𝑞𝑞
1 − 𝑞𝑞𝑖𝑖

Ordinary ASEP: for any 𝜔𝜔 ∈ 0, 1 𝑁𝑁 with ∑𝑖𝑖=1𝑁𝑁 𝜔𝜔(𝑟𝑟) = 𝑀𝑀,  (i.e., 𝑀𝑀 particles)

where    𝜅𝜅 𝜔𝜔 = 1 ≤ 𝑟𝑟 < 𝑗𝑗 ≤ 𝑁𝑁: 𝜔𝜔 𝑟𝑟 = 1, 𝜔𝜔 𝑗𝑗 = 0

M𝑁𝑁
𝑀𝑀(𝜔𝜔) = 𝑞𝑞𝜅𝜅 𝜔𝜔 ∏𝑖𝑖=1

𝑀𝑀 (1 − 𝑞𝑞𝑖𝑖)∏𝑖𝑖=1
𝑁𝑁−𝑀𝑀 (1 − 𝑞𝑞𝑖𝑖)

∏𝑖𝑖=1
𝑁𝑁 (1 − 𝑞𝑞𝑖𝑖)

Ground state:    𝜔𝜔 𝑟𝑟 = 𝑁𝑁 + 1 − 𝑟𝑟



Some previous works
Diaconis-Ram, 2000 (random Metropolis scan)

Benjamini-Berger-Hoffman-Mossel, 2002

Mixing time is order 𝑁𝑁

Labbé-Lacoin, 2016 cutoff for colored/ordinary ASEP (via hydrodynamics)

speculated 𝑁𝑁1/3 cutoff window, and KPZ-related cutoff profile

Bufetov-Nejjar, 2020

ordinary ASEP: 𝑁𝑁1/3 cutoff window and GUE Tracy-Widom profile

Conjecture: colored ASEP also has 𝑁𝑁1/3 cutoff window, with GOE Tracy-Widom profile

Total Variation dist at 2 − 𝜖𝜖 𝑁𝑁/(1 − 𝑞𝑞) → 1
Total Variation dist at 2 + 𝜖𝜖 𝑁𝑁/(1 − 𝑞𝑞) → 0



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
Special case: Totally Asymmetric Simple Exclusion Process (TASEP)
(𝑞𝑞 = 0)

Mallows measure degenerates into an absorbing state:
𝜔𝜔(𝑟𝑟)=𝑁𝑁+1−𝑟𝑟

Total variation mixing absorbing time



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
Ordinary TASEP: corresponds to a growing surface

Initially: M particles at the left, N − M holes at the right

Absorbing state: N − M holes at the left, M particles at the right



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
Ordinary TASEP: corresponds to a growing surface

Last Passage Percolation with i.i.d. Exp(1) weights.



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
Known (Johansson, 1999, via RSK)

if 𝑀𝑀
𝑁𝑁
→ 𝑦𝑦 ∈ (0,1) , 

𝐿𝐿𝑁𝑁−𝑀𝑀,𝑀𝑀−𝑁𝑁 1+2 𝑦𝑦 1−𝑦𝑦

𝑁𝑁1/3 1+2 𝑦𝑦 1−𝑦𝑦
2/3

𝑦𝑦 1−𝑦𝑦 −1/6 → GUE Tracy-Widom

Ordinary TASEP absorbing time is 

linear in 𝑁𝑁, plus 𝑁𝑁1/3 times GUE Tracy-Widom



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
Colored TASEP (Oriented Swap Process, Angel-Holroyd-Romik, 2008)

Using projections: 
finishing time 𝐹𝐹𝑁𝑁,𝑀𝑀 for each particle has 𝑁𝑁1/3

Tracy-Widom GUE

Question: absorbing time? 𝐴𝐴𝑁𝑁 = max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀

Bufetov-Gorin-Romik, 2020   𝐴𝐴𝑁𝑁−2𝑁𝑁
21/3𝑁𝑁1/3 → GOE Tracy-Widom 



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
Colored TASEP (Oriented Swap Process, Angel-Holroyd-Romik, 2008)
Bufetov-Gorin-Romik, 2020   𝐴𝐴𝑁𝑁−2𝑁𝑁

21/3𝑁𝑁1/3 → GOE Tracy-Widom 

Note: 𝐴𝐴𝑁𝑁 = max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀, and each 𝐹𝐹𝑁𝑁,𝑀𝑀 = 𝐿𝐿𝑁𝑁−𝑀𝑀,𝑀𝑀 in distribution.

Conjecture: 

𝐹𝐹𝑁𝑁,𝑀𝑀 𝑀𝑀=1
𝑁𝑁 = 𝐿𝐿𝑁𝑁−𝑀𝑀,𝑀𝑀 𝑀𝑀=1

𝑁𝑁
, so 𝐴𝐴𝑁𝑁 = max

1≤𝑀𝑀≤𝑁𝑁
𝐿𝐿𝑁𝑁−𝑀𝑀,𝑀𝑀

Known to be GOE Tracy-Widom
(e.g. Sasamoto, 2005)

(Bufetov-Gorin-Romik, 2020) 

Follow non-trivial shift-invariance 
(Borodin-Gorin-Wheeler, 2019, Galashin, 2020)

(Z., 2021) 



Why 𝑁𝑁1/3 and GOE Tracy-Widom?
TASEP absorbing time 
distribution

ASEP cutoff profile

Ordinary 
(colorless)

GUE Tracy-Widom
(Angel-Holroyd-Romik, 2008, using LPP results 
from Johansson, 1999)

GUE Tracy-Widom
(Bufetov-Nejjar, 2020: Hecke algebra, coupling, step 
initial ASEP results by Tracy-Widom, 2008)

Colored GOE Tracy-Widom
(shift invariance in Bufetov-Gorin-Romik, 
2020, using LPP results from Sasamoto, 2005)

Natural guess: GOE Tracy-Widom
(Z. 2022)

Theorem. (Z. 2022) Let 𝑊𝑊𝑁𝑁
𝜆𝜆 𝑙𝑙 denote the law of the 𝑆𝑆𝑁𝑁 colored ASEP with 

initial configuration 𝜆𝜆 at time 𝑙𝑙, then  
max
𝜆𝜆∈𝑆𝑆𝑁𝑁

𝑊𝑊𝑁𝑁
𝜆𝜆 2 1 − 𝑞𝑞 −1(𝑁𝑁 + 𝜏𝜏𝑁𝑁1/3) −𝑀𝑀𝑁𝑁

𝑇𝑇𝑇𝑇
→ 1 − 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(22/3𝜏𝜏)



The strategy
Observation: still suffices to consider the ‘finishing times’:

Why?
i. Given 𝑙𝑙 < max

1≤𝑀𝑀≤𝑁𝑁
𝐹𝐹𝑁𝑁,𝑀𝑀
∗ , the configuration at time 𝑙𝑙 is ‘unlike’ the 

(stationary) Mallows measure; so
𝑊𝑊𝑁𝑁

𝐼𝐼𝐼𝐼 𝑙𝑙 − 𝑀𝑀𝑁𝑁 𝑇𝑇𝑇𝑇 ≥ ℙ 𝑙𝑙 < max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗

ii. Take the basic coupling (synchronize two-types of alarms respectively) 
with the stationary process

3 4 5 61 2 7 8

Let 𝐹𝐹𝑁𝑁,𝑀𝑀
∗ be the first time when all numbers ≤ 𝑀𝑀 are at locations > 𝑁𝑁 −𝑀𝑀.

Then total-variation mixing happens roughly at max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗ .

7 5 4 18 6 3 2

Since time 𝐹𝐹𝑁𝑁,𝑀𝑀
∗ , the ≤ 𝑀𝑀 projections are the same.

Since time max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗ , all the same.



The strategy: max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗

1. Truncation: a segment versus ℤ
2. Shift-invariance
3. Use known LPP/TASEP or ASEP asymptotic results
For TASEP: 1 is straightforward

Basic coupling between segment and ℤ
3 4 5 61 2 7 8

-2 -1 3 4 5 60 1 2 7 8 9 10 11

𝐹𝐹𝑁𝑁,𝑀𝑀 = time when there are ≥ 𝑀𝑀 numbers ≤ 𝑀𝑀 to the right of location 𝑁𝑁 −𝑀𝑀
(‘truncation operator’ in Angel-Holroyd-Romik, 2008)

Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

Existing (Quastel-Sarkar, 2020)



The strategy: max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗

1. Truncation: a segment versus ℤ
2. Shift-invariance
3. Use known LPP/TASEP or ASEP asymptotic results
For TASEP: 1 is straightforward

𝐹𝐹𝑁𝑁,𝑀𝑀 = time when there are ≥ 𝑀𝑀 numbers, from  ≤ 𝑀𝑀 to > 𝑁𝑁 −𝑀𝑀
(for both segment and ℤ models)

By shift-invariance, consider the time when 
there are ≥ 𝑀𝑀 numbers, from ≤ 0 to > 𝑁𝑁 − 2𝑀𝑀
This is on one ordinary step-initial TASEP!

Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

Existing (Quastel-Sarkar, 2020)



The strategy: max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗

1. Truncation: a segment versus ℤ
2. Shift-invariance
3. Use known LPP/TASEP or ASEP asymptotic results
For ASEP: 1 is the main task

No exact correspondence (surface up and down)
One side holds: segment surface ≤ ℤ surface

Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

Existing (Quastel-Sarkar, 2020)

Idea: should still be roughly the same (suffices to prove the other side)
Compare both surfaces



Second-class particles

Rate 1
Rate 𝑞𝑞

Particles Holes Second-class particles

Need to compare

Suffices to compare

A first step

Reduces to



Hecke algebra
Basis: 𝑇𝑇𝜔𝜔 𝜔𝜔∈𝑆𝑆𝑁𝑁

Multiplications: 𝑇𝑇𝜎𝜎𝑇𝑇𝜔𝜔 = �
𝑇𝑇𝜎𝜎𝜔𝜔

1 − 𝑞𝑞 𝑇𝑇𝜔𝜔 + 𝑞𝑞𝑇𝑇𝜎𝜎𝜔𝜔
𝜎𝜎 is a nearest neighbor swap; 
depending on whether  𝜅𝜅 𝜎𝜎𝜔𝜔 = 𝜅𝜅 𝜔𝜔 − 1 or 𝜅𝜅 𝜎𝜎𝜔𝜔 = 𝜅𝜅 𝜔𝜔 + 1

Each ∑𝜔𝜔∈𝑆𝑆𝑁𝑁 𝑝𝑝𝜔𝜔𝑇𝑇𝜔𝜔 (for ∑𝜔𝜔∈𝑆𝑆𝑁𝑁 𝑝𝑝𝜔𝜔 = 1) encodes a measure

ASEP evolution 𝑙𝑙𝑡𝑡 ∑𝑖𝑖(𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼) →ℳ𝑁𝑁 (Mallows element) as 𝑙𝑙 → ∞

Involution 𝔦𝔦:𝑇𝑇𝜔𝜔 ↦ 𝑇𝑇𝜔𝜔−1. 𝔦𝔦 𝔦𝔦 𝐴𝐴 = 𝐴𝐴, 𝔦𝔦 𝐴𝐴𝐴𝐴 = 𝔦𝔦(𝐴𝐴)𝔦𝔦(𝐴𝐴), 
and 𝔦𝔦 𝑙𝑙𝑡𝑡 ∑𝑖𝑖(𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼) = 𝑙𝑙𝑡𝑡 ∑𝑖𝑖(𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼), 𝔦𝔦 ℳ𝑁𝑁 = ℳ𝑁𝑁

Also used in Bufetov-Nejjar, 2020
but in a quite different way 

𝑆𝑆𝑁𝑁 embeds into 𝑆𝑆𝑁𝑁𝑁 for 𝑁𝑁 < 𝑁𝑁𝑁



Use symmetry

Apply ℳ[−𝑋𝑋,𝑀𝑀] (initial config of the task)

Start from 𝐼𝐼𝐼𝐼: [−𝑋𝑋,𝑋𝑋] → [−𝑋𝑋,𝑋𝑋], apply projection

Apply 𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼) (run for time 𝒕𝒕)

1 𝑀𝑀

Want: at locations > 𝑁𝑁 −𝑀𝑀, it is unlikely that 
#    is ≪ 𝑀𝑀 while #(    + )≫ 𝑀𝑀

Use 𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)ℳ[−𝑋𝑋,𝑀𝑀] = 𝔦𝔦 ℳ[−𝑋𝑋,𝑀𝑀]𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋

𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)

−𝑋𝑋 + 𝑀𝑀



Use symmetry
Want: at locations > 𝑁𝑁 −𝑀𝑀, it is unlikely that 

#    is ≪ 𝑀𝑀 while #(    + )≫ 𝑀𝑀
Use 𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋

𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)ℳ[−𝑋𝑋,𝑀𝑀] = 𝔦𝔦 ℳ[−𝑋𝑋,𝑀𝑀]𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)

Run for time 𝑙𝑙

Start from 𝐼𝐼𝐼𝐼: −𝑋𝑋,𝑋𝑋 → [−𝑋𝑋,𝑋𝑋], apply projection ≤ 𝑁𝑁 −𝑀𝑀 (because of 𝔦𝔦)

Apply ℳ[−𝑋𝑋,𝑀𝑀]

𝑁𝑁 −𝑀𝑀𝑀𝑀

#    at locations ≤ −𝑋𝑋 + 𝑀𝑀 is ≪ 𝑀𝑀 while #    at locations ≤ 𝑀𝑀 is ≫ 𝑀𝑀

(under 𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)ℳ[−𝑋𝑋,𝑀𝑀])

𝑁𝑁



Use symmetry

at locations >𝑁𝑁−𝑀𝑀, #    is ≪ 𝑀𝑀 while #(    + )≫ 𝑀𝑀

#    at locations ≤ −𝑋𝑋 + 𝑀𝑀 is ≪ 𝑀𝑀 while #    at locations ≤ 𝑀𝑀 is ≫ 𝑀𝑀

𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)ℳ[−𝑋𝑋,𝑀𝑀]

ℳ[−𝑋𝑋,𝑀𝑀]𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)

#(from ≤ −𝑋𝑋 + 𝑀𝑀 to >𝑁𝑁−𝑀𝑀) #(from ≤ 𝑀𝑀 to >𝑁𝑁−𝑀𝑀)

#(from>𝑁𝑁−𝑀𝑀 to ≤ −𝑋𝑋 + 𝑀𝑀) #(from >𝑁𝑁−𝑀𝑀 to ≤ 𝑀𝑀)

𝑀𝑀−𝑋𝑋 + 𝑀𝑀

Projection:

𝑁𝑁 −𝑀𝑀

Projection:



Use symmetry

#    at locations ≤ −𝑋𝑋 + 𝑀𝑀 is ≪ 𝑀𝑀 while #    at locations ≤ 𝑀𝑀 is ≫ 𝑀𝑀

In ℳ[−𝑋𝑋,𝑀𝑀]𝑙𝑙𝑡𝑡 ∑𝑖𝑖=−𝑋𝑋
𝑋𝑋 (𝜎𝜎𝑖𝑖−𝐼𝐼𝐼𝐼)

(exponentially) unlikely by Mallows property!

𝑀𝑀−𝑋𝑋 + 𝑀𝑀

1. Truncation: a segment versus ℤ
2. Shift-invariance
3. Use known LPP/TASEP or ASEP asymptotic results

Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

Existing (Quastel-Sarkar, 2020)

=Time when ≥𝑀𝑀 numbers, from ≤0 to >𝑁𝑁−2𝑀𝑀

𝐹𝐹𝑁𝑁,𝑀𝑀
∗ =Time when ≥𝑀𝑀 numbers, from ≤ 𝑀𝑀 to >𝑁𝑁−𝑀𝑀

max
1≤𝑀𝑀≤𝑁𝑁

𝐹𝐹𝑁𝑁,𝑀𝑀
∗ =ASEP point-to-line



Further questions

TASEP absorbing time 
distribution

ASEP cutoff profile SSEP cutoff profile

Ordinary 
(colorless)

GUE Tracy-Widom
(Angel-Holroyd-Romik, 2008)

GUE Tracy-Widom
(Bufetov-Nejjar, 2020)

𝑁𝑁2log(𝑁𝑁) mixing time, 
𝑁𝑁2Gaussian cutoff (Lacoin, 2015)

Colored GOE Tracy-Widom
(Bufetov-Gorin-Romik, 2020)

GOE Tracy-Widom
(Z. 2022)

Unknown
also called adjacent card shuffling; 
cutoff known (Lacoin, 2013)

Symmetric case? (𝑞𝑞 = 1)



Further questions
ASEP version of the Oriented Swap Process?

Aggarwal-Corwin-Ghosal, 2022 could be useful



Further questions
ASEP with reservoirs (open boudary)?

Model quantum spin chain

Mixing is largely open!

𝛼𝛼 𝛽𝛽

𝛾𝛾 𝛿𝛿



Thank you!
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