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Agenda

» The model of (colored) ASEP
»Background: known results on mixing/cutoff
» Intuition: why GOE Tracy-Widom cutoff profile

»The strategy: finishing times via coupling, symmetry
via Hecke algebra

» Further questions




The model

Asymmetric Simple Exclusion Process (ASEP) with colors:

--- a (continuous time) Markov chain on Sy

020:0,0202020,0,0
OaO000-0a020200

Rate q for left > right
SRR DO DD

Also called biased card shuffling or random Metropolis scan.

Rate 1 for left < right




Projections to ordinary ASEP

Ordinary ASEP (without colors): particles and holes, segment or Z

Rate 1 QO — U@
Rate g U@ @0

0a02020,020,020,0

Projection for colors < 6 —Q—‘—‘—‘—‘—‘—Q—‘—Q—
Projection for colors < 5 —O—‘—‘—O—‘—‘—O—‘—O—

Colored ASEP can be recovered from a// projections.




Stationary: Mallows measure

Forany w € Sy, o al 1—gq
MN((U)_CI ( )gl_qi

where k(w)={1<i<j<N: w()<w()}|
Ground state: w(i) =N+1—1i

Ordinary ASEP: for any w € {0, 1} with X}, w(i) = M, (i.e., M particles)
Hév=1(1 T ql)
where k(w)=|{1<i<j<N: w()=1, w() =0}

My (w) = q




Some previous works

*Diaconis-Ram, 2000 (random Metropolis scan)

"Benjamini-Berger-Hoffman-Mossel, 2002
Mixing time is order N
"lLabbé-Lacoin, 2016 cutoff for colored/ordinary ASEP (via hydrodynamics)

1/3 . _ Total Variation distat (2 —€)N/(1 —q) —» 1
speculated N*/° cutoff window, and KPZ-related cutoff profile ., ariation dict at 2+ ON/(1—q) >0

"Bufetov-Nejjar, 2020
ordinary ASEP: N1/3 cutoff window and GUE Tracy-Widom profile

Conjecture: colored ASEP also has N1/3 cutoff window, with GOE Tracy-Widom profile




Why N1/3 and GOE Tracy-Widom?
Special case: Totally Asymmetric Simple Exclusion Process (TASEP)
(g = 0)

Mallows measure degenerates into an absorbing state:
w(i)=N+1-i

Total variation mixing = absorbing time




Why N1/3 and GOE Tracy-Widom?

Ordinary TASEP: corresponds to a growing surface

Initially: M particles at the left, N — M holes at the right
Absorbing state: N — M holes at the left, M particles at the right




Why N1/3 and GOE Tracy-Widom?

Ordinary TASEP
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corresponds to a growing surface
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Last Passage Percolation with i.i.d. Exp(1) weights.




Why N1/3 and GOE Tracy-Widom?

Known (Johansson, 1999, via RSK)

M it (N~ M. M)
2y e ),
Lo ram N (1425T) P s Eas nnun
( s ) —- = GUE Tracy-Widom |-t
N3 (142y(1-3) T (v(1-3)) B R
== > Ordinary TASEP absorbing time is
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linear in N, plus N/3 times GUE Tracy-Widom i i i1




Why N1/3 and GOE Tracy-Widom?

Colored TASEP (Oriented Swap Process, Angel-Holroyd-Romik, 2008)

SN LT

b Y‘@;”"%’ Using projections:
2NN,

SRR, O . 1/3
w2 %&X\\' finishing time Fy », for each particle has N
N \)\é\g\‘;‘)a‘ Tracy-Widom GUE

AR
200 : N M H ? —_

’ *{. . . . . Question: absorbing time? Ay max Fnm

. . AnN—2N .
Bufetov-Gorin-Romik, 2020 — GOE Tracy-Widom
21/3N1/3




Why N1/3 and GOE Tracy-Widom?

Colored TASEP (Oriented Swap Process, Angel-Holroyd-Romik, 2008)

Bufetov-Gorin-Romik, 2020 2’?’/\'3;\,21173 > GOE Tracy-Widom

Known to be GOE Tracy-Widom

Note: Ay = max, Fy m,and each Fy py = Ly_p p in distribution. .

Conjecture:
N N
F =1L so Ay = max L
{ N,M}M=1 { N—M,M}M=1r N = s BN-MM
(Z.,2021) (Bufetov-Gorin-Romik, 2020)

Follow non-trivial shift-invariance
(Borodin-Gorin-Wheeler, 2019, Galashin, 2020)




Why N1/3 and GOE Tracy-Widom?

TASEP absorbing time ASEP cutoff profile
distribution
Ordinary GUE Tracy-Widom GUE Tracy-Widom
(COIOF'ESS) (Angel-Holroyd-Romik, 2008, using LPP results (Bufetov-Nejjar, 2020: Hecke algebra, coupling, step
from Johansson, 1999) initial ASEP results by Tracy-Widom, 2008)
Colored  GOE Tracy-Widom Natural guess: GOE Tracy-Widom
(shift invariance in Bufetov-Gorin-Romik, (Z 2022)

2020, using LPP results from Sasamoto, 2005)

Theorem. (Z. 2022) Let Wi} (t) denote the law of the Sy colored ASEP with
initial configuration A at time ¢, then

max||W¢(2(1 — @)1 (N + TNY3)) = My|| - 1= F;0p(22%/37)
AESN TV




The strategy

J)*Observation: still suffices to consider the ‘finishing times’:
Let Fy s be the first time when all numbers < M are at locations > N — M.

Then total-variation mixing happens roughly at max Fy y.
1<M<N

Why?
.  Givent < max Fy m, the configuration at time ¢ is ‘unlike’ the

(stationary) Mallows measure; so

Id *
(Wit () — Myl|,, =P [t < max. FN,M]

ii. Take the basic coupling (synchronize two-types of alarms respectively)

with the stationary process

Since time Fy y, the < M projections are the same.

(- ' (- Since time max Fy y, all the same.
Q-G-Q-Q-@-Q-Q-Q 1=MsN




The strategy: max Fx
&Y 1<m<n VM

1. Truncation: a segment versus Z

2. Shift-invariance

Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

3. Use known LPP/TASEP or ASEP asymptotic results

] ] Existing (Quastel-Sarkar, 2020)
For TASEP: 1 is straightforward
Basic coupling between segment and Z

@@

Fy y = time when there are = M numbers < M to the right of location N — M
(‘truncation operator’ in Angel-Holroyd-Romik, 2008)




1=sM<N

1. Truncation: a segment versus Z

The strategy: max Fy,

2. Shift-invariance

Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021 :’

3. Use known LPP/TASEP or ASEP asymptotic results
] ] Existing (Quastel-Sarkar, 2020)
For TASEP: 1 is straightforward

Fy v = time when there are = M numbers, from < Mto> N — M

(for both segment and Z models)
By shift-invariance, consider the time when
there are > M numbers, from<0to> N — 2M

This is on one ordinary step-initial TASEP!




The strategy: max Fx
&Y 1<m<n VM

1. Truncation: a segment versus Z

2. Shift-invariance Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

3. Use known LPP/TASEP or ASEP asymptotic results
Existing (Quastel-Sarkar, 2020)
For ASEP: 1 is the main task

No exact correspondence (surface up and down)
One side holds: segment surface < Z surface

Idea: should still be roughly the same (suffices to prove the other side)
)" Compare both surfaces




Second-class particles

Particles @ Holes O Second-class particles @

Ratel @O~ {O@® @0 0O OO O@
Rateq O@&-— @O OO 00O 0@ 0@

Need to compare 9@ @& -C-CC—
A first step 20200, & & o 00,0.0,0,0,0,0;

Reduces to -0-0-0-0-0--0-CO-0-O-0-0-0-C




Hecke algEbra Sy embeds into Sy, for N < N’

=Basis: {Ty, }wesy

Also used in Bufetov-Nejjar, 2020

I'50 | L
but in a quite different way

(1 o Q)Tw + qTaw

o is a nearest neighbor swap;

*Multiplications: T, T, = {

depending on whether k(ow) = k(w) — 1 ork(ow) = k(w) + 1
"Each X ,esy PwTw (for Xyes, Po = 1) encodes a measure
=ASEP evolution et 2i(@i~Id) _, My (Mallows element) as t — oo

=Involution t: T, ~ T -1.1(i(4)) = 4, i(AB) = i(B)i(4),
and i(et Zi(ai_ld)) p— etZi(o-i_Id)’ i(MN) — MN




Use symmetry

Start from Id: [—X, X| = |—X, X], apply projection
a a s a a o gt g0l Rt 2l 0000, 0,000,000,

~X+M 1 M

Apply M_x » (initial config of the task)
2 a a aat 2O RS0 2 &2 2 200,0,0,0,0,0,0,0,0,0,0,
Apply et Zi=-x(@i=19) (run for time t)
2 a s 22 SO0 200z 2 200 2 22 20z o 20,0:0.0.0,
Want: at locations > N — M, it is unlikely that

#@is << M while # @+@)> M




Use symmetry

2 a a a2 200 2002 2 2002 2 202 20z & L0:0.0.0.0;
Want: at locations > N — M, it is unlikely that
#@is < M while #( @+ @®)> M (under et Zi=-x(@=ID L)

Use etzg(:_x(o-i_ld)M[_X’M] — i(M[_X’M]etzgi—X(o-i_Id))

Start from Id: |[—X,X] — [—X, X], apply projection < N — M (because of i)
V9000 00000000000 OO

Run for time t oo '

90000006 00000000 -0
Apply Mi_x
O-OO00C000 00000000000 - 00

—— #()at locations < —X + M is <K M while #(Oat locations < M is > M




Use symmetry

Projection:

etzgi—X(“i_Id)]\/[[_X,M] -8-8-8-0-0O-O-0-0-0-0-O-O-O-O--O-DRORO-O-O-O-ORO-OC

-X+M M

0-0-0-0- 000000000000 00000 O-O-O-00

at locations >N-M, #@ is K M while #( ®+@®)> M
#(from < —X + M to>N-M) #(from < M to>N-M)

ot X _x(oi—1d) Projection:

00000000088 -6 008 - -
#O at locations < —X + M is < M while # Oat locations < M is> M
#(from>N-Mto< —X + M) #(from>N-M to < M)

M- x,m]




Use symmetry

In M[—X, ] tzl——X(ai_Id)

-Wﬂm

—X+M

#(Oat locations < —X + M is K M while #(Oat locations < M is > M
(exponentially) unlikely by Mallows property!

1. Truncation: a segment versus 7. Fyu =Time when >M numbers, from < M to >N-M

P : =Time when >2M numbers, from <0 to >N-2M
2' Sh Ift_l nvariance Existing from Borodin-Gorin-Wheeler, 2020 or Galashin, 2021

3. Use known LPP/TASEP or ASEP asymptotic results max Fj; ,,=ASEP point-to-line
Existing (Quastel-Sarkar, 2020) 1=M=N




Further questions

Symmetric case? (g = 1)

TASEP absorbing time ASEP cutoff profile SSEP cutoff profile

distribution
Ordinary  GUE Tracy-Widom GUE Tracy-Widom N4log(N) mixing time,
(colorless) (Angel-Holroyd-Romik, 2008)  (Bufetov-Nejjar, 2020)  NZ?Gaussian cutoff (Lacoin, 2015)
Colored GOE Tracy-Widom GOE Tracy-Widom Unknown

(Bufetov-Gorin-Romik, 2020) (Z.2022) also called adjacent card shuffling;

cutoff known (Lacoin, 2013)




Further questions

ASEP version of the Oriented Swap Process?

Aggarwal-Corwin-Ghosal, 2022 could be useful




Further questions

ASEP with reservoirs (open boudary)?

Model quantum spin chain

Mixing is largely open!




Thank you!
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