Mean Field Behavior during the Big Bang for Coalescing Random Walk

Dong Yao
Jiangsu Normal University
THU-PKU-BNU Probability Webinar

Oct. 13, 2021

Joint work with Jonathan Hermon (University of British Columbia) Shuangping Li (Princeton University) Lingfu Zhang (Princeton University)
arXiv preprint: 2105.11585

CRW

Coalescing Random Walk (CRW) on a graph G:

- Initially one walker at each vertex of graph G.
- Each walker performs independent continuous time random walk. Jump rate equals 1 along each edge.
- Whenever two walkers meet(collide), they merge into one walker. This walker continues to perform random walk.

CRW

Coalescing Random Walk (CRW) on a graph G:

- Initially one walker at each vertex of graph G.
- Each walker performs independent continuous time random walk. Jump rate equals 1 along each edge.
- Whenever two walkers meet(collide), they merge into one walker. This walker continues to perform random walk.

Can be defined for general Markov chain with jump rate $\left\{r_{x, y}\right\}$. Common choices

- $r_{x, y}=\mathbf{1}[x \sim y]$ for general graph
- $r_{x, y}=\mathbf{1}[x \sim y] / d(x)$ for regular graph

CRW

Coalescing Random Walk (CRW) on a graph G:

- Initially one walker at each vertex of graph G.
- Each walker performs independent continuous time random walk. Jump rate equals 1 along each edge.
- Whenever two walkers meet(collide), they merge into one walker. This walker continues to perform random walk.

Can be defined for general Markov chain with jump rate $\left\{r_{x, y}\right\}$. Common choices

- $r_{x, y}=\mathbf{1}[x \sim y]$ for general graph
- $r_{x, y}=\mathbf{1}[x \sim y] / d(x)$ for regular graph

Motivation: duality with the voter model.

An example

Black=occupied, Green =vacant

An example

Black=occupied, Green =vacant

An example

Black=occupied, Green =vacant

An example

Black=occupied, Green =vacant

CRW on the complete graph

G is a complete graph (clique). $r_{x, y}=1 /(n-1)$.
$L_{t}: \#$ of walkers at time t.
$L_{0}=n . L_{t} \rightarrow L_{t}-1$ at rate $L_{t}\left(L_{t}-1\right) /(n-1)$.

CRW on the complete graph

G is a complete graph (clique). $r_{x, y}=1 /(n-1)$.
$L_{t}: \#$ of walkers at time t.
$L_{0}=n . L_{t} \rightarrow L_{t}-1$ at rate $L_{t}\left(L_{t}-1\right) /(n-1) . \tau_{\text {coal }}$: (random)
coalescence time (only one walker left)

$$
\tau_{\text {coal }}=\sum_{i=1}^{n} \frac{e_{i}}{i(i-1) / n} .
$$

- $e_{i}, i \geq 1$ are i.i.d. with dist. $\operatorname{Exp}(1)$.
- $\frac{e_{i}}{i(i-1) / n}$ is the time it takes for the $n-i+1$-th coalescence to occur (corresponding to L_{t} from i to $i-1$).

CRW on the complete graph

G is a complete graph (clique). $r_{x, y}=1 /(n-1)$.
$L_{t}: \#$ of walkers at time t.
$L_{0}=n . L_{t} \rightarrow L_{t}-1$ at rate $L_{t}\left(L_{t}-1\right) /(n-1) . \tau_{\text {coal }}$: (random)
coalescence time (only one walker left)

$$
\tau_{\text {coal }}=\sum_{i=1}^{n} \frac{e_{i}}{i(i-1) / n} .
$$

- $e_{i}, i \geq 1$ are i.i.d. with dist. $\operatorname{Exp}(1)$.
- $\frac{e_{i}}{i(i-1) / n}$ is the time it takes for the $n-i+1$-th coalescence to occur (corresponding to L_{t} from i to $i-1$).
Related model: Kingman's coalescent. $L_{0}=\infty$. $L_{t} \rightarrow L_{t}-1$ at rate $L_{t}\left(L_{t}-1\right) / 2$.

Decay of density on the complete graph

Define the expected density (expected fraction of occupied sites)

$$
P_{t}=\frac{\mathbb{E}\left(L_{t}\right)}{n}
$$

Determine L_{t} : the time it takes to make h coalescences

$$
\sum_{i=n-h+1}^{n} \frac{e_{i}}{i(i-1) /(n-1)} \sim n\left(\frac{1}{n-h}-\frac{1}{n}\right)
$$

for $1 \ll h \ll n$. Set this expression to be t, we get

$$
L_{t}=n-h \sim \frac{n}{t+1}
$$

Thus

$$
P_{t} \sim \frac{1}{t+1}
$$

Spatial structure

Often there is a spatial structure.

- \mathbb{Z}^{d}.
- \mathbb{T}^{d}.
- General vertex transitive graphs.
- Random graphs (e.g., configuration model).

Heuristic argument [van den Berg-Kesten, 2000]

Consider $\mathbb{Z}^{d} . P_{t}=P_{t}(o)$: prob. that origin is occupied at time t. Take $1 \ll \Delta(t) \ll t$.

$$
\begin{aligned}
-\frac{d P_{t}}{d t} & =\mathbb{P}\left(o \text { and } \mathbf{e}_{1} \text { occupied at } t\right) \\
& \sim \sum_{x, y} \mathbb{P}(x \text { and } y \text { occupied at } t-\Delta(t)) \times \\
& \mathbb{P}\left(x+S_{\Delta(t)}=o, y+S_{\Delta(t)}^{\prime}=\mathbf{e}_{1}, x+S_{r} \neq y+S_{r}^{\prime}, \forall r \leq \Delta(t)\right) \\
& \sim P_{t-\Delta(t)}^{2} \alpha_{\Delta(t)}
\end{aligned}
$$

- x and y are the location of the walkers that later come to o and $\mathbf{e}_{1} . S$., $S_{\text {.': }}$ independent random walks starting from 0 .
- $\alpha_{\Delta(t)}$: the probability that two time-reversed random walk starting from o and \mathbf{e}_{1} don't collide by time $\Delta(t)$.

Results on \mathbb{Z}^{d}

Assuming $P_{t} \sim P_{t-\Delta(t)}$ and $\alpha_{t} \sim \alpha_{t-\Delta(t)}$. The heuristic suggests that $P_{t} \approx 1 /\left(t \alpha_{t}\right)$ for moderately large t. This was known to be true for SRW on $\mathbb{Z}^{d}, d \geq 2$.

Theorem (Bramson-Griffeath, 1980)
Consider the CRW on \mathbb{Z}^{d}. Ww have, as $t \rightarrow \infty$,

$$
P_{t} \sim \begin{cases}\frac{1}{\pi} \frac{\log t}{t} & d=2 \\ \left(\gamma_{d} t\right)^{-1} & d \geq 3\end{cases}
$$

where γ_{d} is the probability that a simple random walkin \mathbb{Z}^{d} starting from origin never returns to it.

Results on \mathbb{Z}^{d}

Assuming $P_{t} \sim P_{t-\Delta(t)}$ and $\alpha_{t} \sim \alpha_{t-\Delta(t)}$. The heuristic suggests that $P_{t} \approx 1 /\left(t \alpha_{t}\right)$ for moderately large t. This was known to be true for SRW on $\mathbb{Z}^{d}, d \geq 2$.
Theorem (Bramson-Griffeath, 1980)
Consider the CRW on \mathbb{Z}^{d}. Ww have, as $t \rightarrow \infty$,

$$
P_{t} \sim \begin{cases}\frac{1}{\pi} \frac{\log t}{t} & d=2 \\ \left(\gamma_{d} t\right)^{-1} & d \geq 3\end{cases}
$$

where γ_{d} is the probability that a simple random walk in \mathbb{Z}^{d} starting from origin never returns to it.
By justifying previous heuristic argument, [van der Berg-Kesten, 2000] proved the same result for $d \geq 3$.

Approximation for coalescence time

π : stationary distribution.
Mean meeting time (the time it take for two indep. walkers to meet)

$$
t_{\text {meet }}=\mathbb{E}_{\pi^{2}}\left(\tau_{\text {meet }}\right)
$$

For complete graph $t_{\text {meet }}=(n-1) / 2$.

Approximation for coalescence time

π : stationary distribution.
Mean meeting time (the time it take for two indep. walkers to meet)

$$
t_{\text {meet }}=\mathbb{E}_{\pi^{2}}\left(\tau_{\text {meet }}\right)
$$

For complete graph $t_{\text {meet }}=(n-1) / 2$.
Aldous and Fill conjectured that for finite transitive graph (transitivity means the graph looks the same from every vertex)

$$
\frac{\tau_{\text {coal }}}{t_{\text {meet }}} \sim \sum_{i=2}^{\infty} \frac{e_{i}}{i(i-1) / 2}
$$

Equality holds for complete graph (replacing ∞ by n). $e_{i} \sim \operatorname{Exp}(1)$.

Approximation for coalescence time

π : stationary distribution.
Mean meeting time (the time it take for two indep. walkers to meet)

$$
t_{\text {meet }}=\mathbb{E}_{\pi^{2}}\left(\tau_{\text {meet }}\right)
$$

For complete graph $t_{\text {meet }}=(n-1) / 2$.
Aldous and Fill conjectured that for finite transitive graph (transitivity means the graph looks the same from every vertex)

$$
\frac{\tau_{\mathrm{coal}}}{t_{\mathrm{meet}}} \sim \sum_{i=2}^{\infty} \frac{e_{i}}{i(i-1) / 2}
$$

Equality holds for complete graph (replacing ∞ by n). $e_{i} \sim \operatorname{Exp}(1)$. The factor $i(i-1) / 2$ counts the number of pairs

- Why exponential?

Aldous-Brown approximation

Lemma (Aldou-Brown, 1992)

For an irreducible reversible Markov chain on a finite state V with stationary distribution π and $A \subset V$, if we denote the hitting time of A by T_{A} and its density function w.r.t. the stationary chain by $f_{T_{A}}$, then

$$
\left|\mathbb{P}_{\pi}\left(T_{A}>t\right)-\exp \left(-\frac{t}{\mathbb{E}_{\pi}\left(T_{A}\right)}\right)\right| \leq \frac{t_{\mathrm{rel}}}{\mathbb{E}_{\pi}\left(T_{A}\right)}
$$

and

$$
\frac{1}{\mathbb{E}_{\pi}\left(T_{A}\right)}\left(1-\frac{2 t_{\mathrm{rel}}+t}{\mathbb{E}_{\pi}\left(T_{A}\right)}\right) \leq f_{T_{A}}(t) \leq \frac{1}{\mathbb{E}_{\pi}\left(T_{A}\right)}\left(1+\frac{t_{\mathrm{rel}}}{2 t}\right)
$$

Consider the product chain and take A to be the diagonal set. We have $E_{\pi}\left(T_{A}\right)=t_{\text {meet }}$.

Second Prediction

[Oliveira, 2013] proved the Aldous-Fill conjecture under the condition $t_{\text {mix }} \ll t_{\text {meet }}$ (equivalent to $t_{\text {rel }} \ll t_{\text {meet }}$ due to Hermon). $t_{\text {mix }}$ and $t_{\text {rel }}$ quantify the rate of convergence to stationary distribution (See Markov Chains and Mixing Times).

Second Prediction

[Oliveira, 2013] proved the Aldous-Fill conjecture under the condition $t_{\text {mix }} \ll t_{\text {meet }}$ (equivalent to $t_{\text {rel }} \ll t_{\text {meet }}$ due to Hermon). $t_{\text {mix }}$ and $t_{\text {rel }}$ quantify the rate of convergence to stationary distribution (See Markov Chains and Mixing Times).
The time it takes to make h coalescences is about

$$
\begin{gathered}
t_{\mathrm{meet}} \sum_{i \geq n-h+1} \frac{e_{i}}{i(i-1) / 2} \sim \frac{2 t_{\mathrm{meet}}}{n-h} . \\
\frac{2 t_{\mathrm{meet}}}{n-h}=t \Rightarrow n-h=\frac{2 t_{\mathrm{meet}}}{t} .
\end{gathered}
$$

Hence we have another prediction

$$
P_{t}=\frac{E\left(L_{t}\right)}{n}=\frac{n-h}{n} \sim \frac{2 t_{\mathrm{meet}}}{n t} .
$$

Equivalence of the two predictions

Two predictions for P_{t}

$$
P_{t} \sim \frac{1}{t \alpha_{t}}
$$

where $\alpha_{t}=r(o) \mathbb{P}_{o, \nu_{o}}\left(\tau_{\text {meet }}>t\right)\left(\nu_{o}\right.$ is a random neighbor of o)

$$
P_{t} \sim \frac{2 t_{\mathrm{meet}}}{n t} \text { for finite graphs }
$$

They are equivalent to each other for many graphs by Kac's formula (in continuous time) and Aldous-Brown approximation:

$$
\frac{1}{t_{\text {meet }}} \sim f_{T_{A}}(t)=\frac{2}{n} \mathbb{P}_{o, \nu_{o}}\left(\tau_{\text {meet }}>t\right) \text { for } r(o)=1
$$

Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)
Two predictions holds as long as $1 \ll t \ll t_{\text {coal }}$ (called the Big Bang regime since the number of particles is evolving rapidly in this regime) for

- transitive graphs G_{n} such that $\operatorname{diam}\left(G_{n}\right)^{2} \ll n / \log n$,
- Configuration Model $\mathbb{C M}(n, D)$ with $3 \leq D<M$. If D is a constant d then $\mathbb{C M}(n, D)$ is random d-regular graph.

Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)
Two predictions holds as long as $1 \ll t \ll t_{\text {coal }}$ (called the Big Bang regime since the number of particles is evolving rapidly in this regime) for

- transitive graphs G_{n} such that $\operatorname{diam}\left(G_{n}\right)^{2} \ll n / \log n$,
- Configuration Model $\mathbb{C M}(n, D)$ with $3 \leq D<M$. If D is a constant d then $\mathbb{C M}(n, D)$ is random d-regular graph.

Remarks:

- For such graphs $t_{\text {coal }}$ and $t_{\text {meet }}$ both have order n.
- By [Tessera and Tointon, 2019], $\operatorname{diam}\left(G_{n}\right)^{2} \ll n / \log n$ implies

$$
\lim _{s \rightarrow \infty} \limsup _{n \rightarrow \infty} \sup _{x, y} \int_{s \wedge t_{\mathrm{rel}}}^{t_{\mathrm{rel}}} p_{s}(x, y) \mathrm{d} s=0
$$

Configuration model

Construction of the configuration model $\mathbb{C M}_{n}(D)$

- Let D be a probability measure on \mathbb{Z}_{+}, and $n \in \mathbb{Z}_{+}$.
- We take n vertices labeled $1, \ldots, n$, and d_{1}, \ldots, d_{n} i.i.d. sampled from D.
- For each vertex i we attach d_{i} half edges to it. Then we get G_{n} by uniformly matching all half edges, conditioned on $\sum_{i=1}^{n} d_{i}$ being even.

Configuration model

Construction of the configuration model $\mathbb{C M}_{n}(D)$

- Let D be a probability measure on \mathbb{Z}_{+}, and $n \in \mathbb{Z}_{+}$.
- We take n vertices labeled $1, \ldots, n$, and d_{1}, \ldots, d_{n} i.i.d. sampled from D.
- For each vertex i we attach d_{i} half edges to it. Then we get G_{n} by uniformly matching all half edges, conditioned on $\sum_{i=1}^{n} d_{i}$ being even.
The local weak limit $\mathbb{U} \mathbb{G} \mathbb{T}(D)$ of $\mathbb{C M}_{n}(D)$ is a unimodular Galton-Watson tree where
- the root has offspring distribution D
- later generations have offspring distribution D^{*} :

$$
\mathbb{P}\left(D^{*}=k\right):=\frac{(k+1) \mathbb{P}(D=k+1)}{\sum_{i=0}^{\infty} i \mathbb{P}(D=i)}
$$

Main Results: infinite Graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)
The prediction $P_{t}(o) \sim 1 /(t \alpha)$ as $t \rightarrow \infty$ where

$$
\alpha=\mathbb{E}\left(r(o) \mathbb{P}_{o, \nu_{o}}\left(\tau_{\text {meet }}=\infty\right)\right)
$$

holds for

- all transient transitive unimodular graphs, including
- Cayley graphs
- amenable graphs(=graphs with subexponential decay of return probability)
- unimodular Galton-Watson tree UGT(D). If D is a constant d then $\operatorname{UGT}(D)=\mathbb{T}^{d}$.

Duality with voter model

Voter model: at rate $r_{x, y}, x$ adopts the opinion of y. A site is occupied in CRW \leftrightarrow the opinion is not lost in VM.

Figure: Left panel: CRW; right panel: voter model

Proof Sketch of [Bramson-Griffeath,1980]

n_{t} : \# walkers that end up at origin at time t.
η_{t} : the voter model starting from different opinions at every site.
$\hat{N}_{t}:=\left\{x: \eta_{t}(x)=\eta_{t}(o)\right\}$. [Kelly, 1977] gives

$$
\mathbb{P}\left(\hat{N}_{t}=j\right)=j \mathbb{P}\left(n_{t}=j\right), j \geq 0,\left(\text { i.e., size-biased verion of } n_{t}\right)
$$

$$
P_{t}=\mathbb{P}\left(n_{t}>0\right)=\mathbb{E}\left(\hat{N}_{t}^{-1}\right)=\mathbb{E}\left[\left(\frac{\hat{N}_{t}}{\mathbb{E}\left(\hat{N}_{t}\right)}\right)^{-1}\right] \mathbb{E}\left(\hat{N}_{t}\right)^{-1}
$$

$\mathbb{E}\left(\hat{N}_{t}\right)$ is equal to $\mathbb{E}\left(R_{2 t}\right)$ where R. is the range of a random walk.

Proof Sketch of [Bramson-Griffeath,1980]

n_{t} : \# walkers that end up at origin at time t.
η_{t} : the voter model starting from different opinions at every site.
$\hat{N}_{t}:=\left\{x: \eta_{t}(x)=\eta_{t}(o)\right\}$. [Kelly, 1977] gives

$$
\mathbb{P}\left(\hat{N}_{t}=j\right)=j \mathbb{P}\left(n_{t}=j\right), j \geq 0,\left(\text { i.e., size-biased verion of } n_{t}\right)
$$

$$
P_{t}=\mathbb{P}\left(n_{t}>0\right)=\mathbb{E}\left(\hat{N}_{t}^{-1}\right)=\mathbb{E}\left[\left(\frac{\hat{N}_{t}}{\mathbb{E}\left(\hat{N}_{t}\right)}\right)^{-1}\right] \mathbb{E}\left(\hat{N}_{t}\right)^{-1}
$$

$\mathbb{E}\left(\hat{N}_{t}\right)$ is equal to $\mathbb{E}\left(R_{2 t}\right)$ where R. is the range of a random walk.
Theorem (Sawyer, 1979)
Consider $C R W$ on $\mathbb{Z}^{d}, d \geq 2$.

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left[\left(\frac{\hat{N}_{t}}{\mathbb{E}\left(\hat{N}_{t}\right)}\right)^{k}\right]=\frac{(k+1)!}{2^{k}}
$$

Proof Sketch of [Bramson-Griffeath,1980]-cont'd

A remark from [Bramson-Griffeath,1980]: Sawyer's theorem comes tantalizingly close to determining the asymptotics of P_{t}. Gap: the function $f(x)=x^{-1}$ is unbounded near $x=0$.

Proof Sketch of [Bramson-Griffeath,1980]-cont'd

A remark from [Bramson-Griffeath,1980]: Sawyer's theorem comes tantalizingly close to determining the asymptotics of P_{t}. Gap: the function $f(x)=x^{-1}$ is unbounded near $x=0$.

Theorem (Bramson-Griffeath, 1980)

$$
P_{t}= \begin{cases}O\left(\frac{\log t}{t}\right) & d=2 \\ O\left(\frac{1}{t}\right) & d \geq 3\end{cases}
$$

Lemma (Bramson-Griffeath, 1980)

Sawyer's Theorem+upper bound on P_{t} gives the asymptotics of P_{t}. Basically, the upper bound on P_{t} implies the $\hat{N}_{t} / E\left(\hat{N}_{t}\right)$ doesn't have too much mass near 0 .

Transform to coalescence probability

Let N_{t} be the number of walkers that collide with the walker starting at $U . N_{0}=1$.
$N_{t}=\sum_{x} 1$ [the particle starting at x coalesced with U by time $\left.t\right]$

$$
P_{t}=\mathbb{E}\left(N_{t}^{-1}\right)=\left[\mathbb{E}\left(N_{t}\right)\right]^{-1} \mathbb{E}\left[\left(\frac{N_{t}}{\mathbb{E}\left(N_{t}\right)}\right)^{-1}\right]
$$

(A graph rooted at a uniform vertex is unimodular.)

Transform to coalescence probability

Let N_{t} be the number of walkers that collide with the walker starting at $U . N_{0}=1$.
$N_{t}=\sum_{x} \mathbf{1}[$ the particle starting at x coalesced with U by time $t]$

$$
P_{t}=\mathbb{E}\left(N_{t}^{-1}\right)=\left[\mathbb{E}\left(N_{t}\right)\right]^{-1} \mathbb{E}\left[\left(\frac{N_{t}}{\mathbb{E}\left(N_{t}\right)}\right)^{-1}\right]
$$

(A graph rooted at a uniform vertex is unimodular.)
\mathbb{C} : coalescence time for $\mathrm{k}+1$ walkers.

$$
\begin{aligned}
\mathbb{E}\left(N_{t}^{k}\right) & =\frac{1}{n} \sum_{x_{1}, \ldots, x_{k+1} \in V} \mathbb{E}\left(\mathbf{1}\left[X_{i}(0)=x_{i}, \forall 1 \leq i \leq k+1\right]\right. \\
& \left.\times \mathbf{1}\left[\mathbb{C}\left(X_{1}, \ldots, X_{k+1}\right) \leq t\right]\right) \\
& =n^{k} \mathbb{P}_{\pi^{\otimes k+1}}\left(\mathbb{C}\left(X_{1}, \ldots, X_{k+1}\right) \leq t\right)
\end{aligned}
$$

Ingredients of the proof

Using the machinery in the proof of \mathbb{Z}^{d} case by
Braomson-Griffeath, it suffices to

- give an upper bound of P_{t} that differs from the 'true value' of P_{t} by a multiplicative constant,
- show that the coalescence probability

$$
\mathbb{P}_{\pi^{k+1}}\left(\mathbb{C}\left(X_{1}, \ldots, X_{k+1}\right) \leq t\right) \sim(k+1)!\left(\frac{t}{t_{\mathrm{meet}}}\right)^{k}
$$

Another indication of mean field! B-G proof heavily relies on the specific geometric structure of \mathbb{Z}^{d}.

Solution

- For the first part, we show that for any $t>0$,

$$
c \frac{\inf _{x \in G} \int_{0}^{t} p_{s}(x, x) d s}{t} \leq P_{t} \leq C \frac{\sup _{x \in G} \int_{0}^{t} p_{s}(x, x) d s}{t}
$$

where c and C are universal constants.

- For the second part, we use the reversibility of random walk to transform collision probability to non-colliding probability. If two forward paths collide at t then (after reversing time) the backward paths don't collide in $[0, t]$.

We want to estimate $\mathbb{P}_{\pi^{\otimes k+1}}\left(\mathbb{C}\left(X_{1}, \ldots, X_{k+1}\right) \leq t\right)$.
Consider the case $k=1$. The probability that X_{1} and X_{2} collide within time interval $[t, t+d t]$ is about

$$
\begin{aligned}
& 2 \sum_{u, v} \mathbb{P}\left(X_{1}(t)=u, X_{2} \text { jumps from } u \text { to } v \text { in }[t, t+d t]\right) \\
\sim & 2 \sum_{u, v} \mathbb{P}\left(X_{1}(t)=u, X_{2}(t)=v, \text { no collisions in }[0, t]\right) r_{v, u} d t \\
\sim & 2 \sum_{u} \mathbb{P}\left(\gamma_{1}(0)=u\right) r(u) \times \\
& \sum_{v} \frac{r_{u, v}}{r(u)} P\left(\gamma_{2}(0)=v\right) \mathbb{P}_{u, v}\left(\gamma_{1}(s) \neq \gamma_{2}(s), \forall 0 \leq s \leq t\right) d t,
\end{aligned}
$$

where γ_{1} and γ_{2} are the time-reversals of X_{1}, X_{2} on $[0, t]$.

Collision Pattern and Branching Structure

We can imagine γ_{1} is the parent of γ_{2} and interpret the term $r_{u, v} / r(u)$ as the probability of the particle at u giving birth to a particle at location v.
Can be generalized to $k \geq 3$ paths.

If two walkers don't collide in time $O\left(t_{\text {rel }}\right)$, then they will also not collide before time t.

Lemma

For any $x \neq y$ and $0<s<t$, the probability that two walkers starting from x and y collide between time s and t is bounded by

$$
2 \exp \left(-s / t_{\mathrm{rel}}\right) \frac{\max _{z} \int_{0}^{2 s} p_{s}(z, z) \mathrm{d} s}{\min _{z} \int_{0}^{2 s} p_{s}(z, z) \mathrm{d} s}+\frac{8 t}{n}\left(s^{-1} \vee r_{\max }\right)
$$

$r_{\text {max }}=\max _{x} r(x)$. The error is small for $t_{\text {rel }} \ll s \leq t \ll n$.

Open Question

For finite graphs our results (the expectation of the number of occupied sites) can be upgraded to a weak law of large numbers using negative correlation
$\mathbb{P}($ both x and y occupied at $t) \leq \mathbb{P}(x$ occupied at $t) \mathbb{P}(y$ occupied at $t)$.
What about fluctuations? Do we have a Gaussian limit as in the mean field case ([Aldous, 1999])?

References I

[1] David J Aldous and Mark Brown. Inequalities for rare events in time-reversible markovchains i.Lecture Notes-Monograph Series, pages 1-16, 1992.
[2] Itai Benjamini, Eric Foxall, Ori Gurel-Gurevich, Matthew Junge, and Harry Kesten. Site recurrence for coalescing random walk. Electronic Communications in Probability, 21, 2016.
[3] Maury Bramson and David Griffeath. Asymptotics for interacting particle systems on \mathbb{Z}^{d}. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 53(2): 183-196, 1980.
[4] Eric Foxall, Tom Hutchcroft, and Matthew Junge. Coalescing random walk on uni-modular graphs. Electronic Communications in Probability, 23, 201.

References II

[5] Roberto Oliveira. On the coalescence time of reversible random walks. Transactions of the American Mathematical Society, 364(4):2109-2128, 2012.
[6] Roberto Oliveira. Mean field conditions for coalescing random walks. The Annals of Probability, 41(5):3420-3461, 2013.
[7] Stanley Sawyer. A limit theorem for patch sizes in a selectively-neutral migration model. Journal of Applied Probability, 16(3):482-495, 1979.
[8] Romain Tessera and Matthew Tointon. A finitary structure theorem for vertex-transitive graphs of polynomial growth ArXiv preprint:1908.06044, 2019.
[9] J. van den Berg and Harry Kesten. Asymptotic density in a coalescing random walk model. Annals of Probability, pages 303-352, 2000.

Thanks!

