# Airy $_{\beta}$ line ensemble

#### Lingfu Zhang

The Division of Physics, Mathematics, and Astronomy, Caltech

Joint works with Vadim Gorin (UC Berkeley) and Jiaming Xu (KTH), and with Jiaoyang Huang (UPenn) arXiv:2411.10829 arXiv:2411.10586



**North British Probability Seminar** 

**Nov 2024** 

## β ensemble

(Dyson, 62') a distribution on  $\{(x_1, ..., x_N): x_1 \le ... \le x_N\}$ 

$$\mathbb{P}[(\lambda_1, ..., \lambda_N) = (x_1, ..., x_N)] = \frac{1}{Z} \prod_{1 \le i < j \le N} |x_i - x_j|^{\beta} \prod_{i=1}^{N} W(x_i)$$

In mathematical physics Coulomb log-gas,  $\beta$  is the inverse temperature;

originally: energy levels of heavy nuclei

quantum physics and integrable systems: Calogero-Moser-Sutherland model, Selberg integral, orthogonal polynomials...

Higher dim Coulomb gas XY model, Ginzburg-Landau, Laughlin wavefunction in fractional quantum Hall effect, etc.

In number theory zeros of Riemann  $\zeta$  function

#### In probability/statistics eigenvalues of classical random matrices ( $\beta = 1, 2, 4$ )

Hermitian matrix  $(X + X^*)$   $W(x) = e^{-x^2}$  (Gaussian  $\beta$  ensemble) Wishart matrix  $(XX^*)$   $W(x) = x^p e^{-x}$  (Laguerre  $\beta$  ensemble) MANOVA matrix  $(XX^*(XX^* + YY^*)^{-1})$   $W(x) = x^p (1-x)^q$  (Jacobi  $\beta$  ensemble)

- $\beta = 1, 2, 4$ : real, complex, quaternion entries
- General  $\beta$ : tri-diagonal matrix model (Dumitriu-Edelman, 02')

# Limit of top particle: Tracy-Widom $_{\beta}$ distribution







Laguerre  $\beta$  ensemble: Marchenko-Pastur law

Gaussian  $\beta$  ensemble: semi-circle law

However, the largest eigenvalue has the same scaling limit:  $\lim_{N \to \infty} \frac{(\lambda_1 - cN^a)}{N^b} = \text{Tracy-Widom}_{\pmb{\beta}}$ 

Universality Tracy-Widom $_{\beta}$  limit holds for most  $\beta$  ensembles (even some variants, e.g., discrete ones)

It also appears (or is conjectured) in many probabilistic models

KPZ growth model and particle systems ( $\beta=1,2$ ) Adjacency matrix of random graph ( $\beta=1$ )

(general  $\beta$ ) non-intersecting random walks, random partition, etc.



# Tracy-Widom $_{\beta}$ distribution

**History** First for  $\beta=1,2,4$  (90s, by Tracy-Widom, etc.) using special structures then general  $\beta$  (by Ramírez-Rider-Virag, 06') using tri-diagonal matrix

Airy<sub> $\beta$ </sub> point process Not only  $\lambda_1$ , also for the first a few particles/eigenvalues  $(\lambda_1 \ge \lambda_2 \ge \cdots)$ , which jointly converge to a point process (edge limit)





'Airy' in its name comes from the connection to the Airy function Ai, which solves the ODE  $\mathrm{Ai}''(x) = x\mathrm{Ai}(x)$ 

e.g. when  $\beta \to \infty$ , the point process converges to zeros of Ai.

What we do: add a 'time' coordinate (Gaussian → Brownian motion)

- $\triangleright$  Many natural 'multi-time' extensions of  $\beta$  ensembles
- > To better understand Tracy-Widom<sub>\beta</sub>



# Dyson Brownian motion (DBM)

(Dyson, 62') Dynamics: a diffusion in  $\{(x_1, ..., x_N): x_1 \le \cdots \le x_N\}$ 

$$dY_i(t) = \frac{\beta}{2} \sum_{j \neq i} \frac{dt}{Y_i(t) - Y_j(t)} + dB_i(t), \qquad \forall 1 \le i \le N$$



Starting from zero,  $(Y_1(t), ..., Y_N(t))$  is Gaussian  $\beta$  ensemble  $\prod_{1 \le i < j \le N} |x_i - x_j|^{\beta} \prod_{i=1}^N e^{-x_i^2/(2t)}$ 

The idea is to generalize the notion of matrix ensemble in such a way that the Coulomb gas model acquires a meaning, not only as a static model in timeless thermodynamical equilibrium, but as a dynamical system which may be in an arbitrary nonequilibrium state changing with time.

\*\*Dyson, 62'\*

- $\beta$  = 1,2,4: eigenvalues of  $A+(X_t+X_t^*)$ , with  $(X_t)_{ij}$  being independent Brownian motions, = DBM starting from Spec(A)
  - (used to prove universality of eigenvalue statistics, in e.g., Johansson, 00'; Erdos-Schlein-Yau, 09'; see also A Dynamical Approach to Random Matrix Theory by Erdos-Yau, 17')
- ho  $\beta=2$ : central tool in KPZ universality class (the directed landscape, Dauvergne-Virag-Ortman, 18')
- ightharpoonup Driving function for multiple  $SLE_{\kappa}$ , with  $\kappa = \frac{8}{\beta}$  (since Cardy, 03'); e.g., Ising  $\kappa = 3$ ,  $\beta = \frac{8}{3}$ ; self-avoiding walk  $\kappa = \frac{8}{3}$ ,  $\beta = 3$

# Airy $_{\beta}$ line ensemble

(Gorin-Xu-Z. 24') For any  $\beta > 0$ , there is a unique ordered family of random processes, stationary and continuous in t, denoted by

$$\left\{\mathcal{A}_{i}^{\beta}(t)\right\}_{i=1}^{\infty}$$
, such that for any  $\vec{\alpha} \in \mathbb{R}_{+}^{m}$  and  $\vec{t} \in \mathbb{R}^{m}$ ,

$$\mathbb{E}\left[\prod_{j=1}^{m}\left(\sum_{i=1}^{\infty}\exp\left(\alpha_{j}\mathcal{A}_{i}^{\beta}(t_{j})\right)\right)\right]=L_{\beta}(\vec{\alpha},\vec{t}).$$

 $(L_{\beta}(\vec{\alpha}, \vec{t})$  to be defined later)



A new 'universal' object

We call  $\{\mathcal{A}_i^{\beta}(t)\}_{i=1}^{\infty}$  the Airy<sub>\beta</sub> line ensemble (determined by Laplace transforms)

(Gorin-Xu-Z., 24') Airy $_{\beta}$  line ensemble is the edge limit of (zero initial) DBM

i.e., 
$$\lim_{N \to \infty} \frac{1}{2N^{1/3}} \left( Y_i \left( \frac{2N}{\beta} + \frac{2tN^{2/3}}{\beta} \right) - 2\sqrt{N(N + tN^{2/3})} \right)$$

# Other than DBM: Gaussian corners process

Hermitian matrix  $X + X^*$  (eigenvalues: Gaussian  $\beta = 1,2,4$  ensemble), take corners



Joint law of eigenvalues: interlace

$$\mathbb{P}[\left\{\lambda_i^k\right\}_{1 \leq i \leq k \leq N} = \left\{x_i^k\right\}_{1 \leq i \leq k \leq N}] = \frac{1}{Z} \prod_{k=1}^{N-1} \prod_{1 \leq i < j \leq k} |x_i^k - x_j^k|^{2-\beta} \prod_{a=1}^k \prod_{b=1}^{k+1} |x_a^k - x_b^{k+1}|^{\frac{\beta}{2}-1} \prod_{i=1}^N e^{-\frac{\left(x_i^N\right)^2}{2}}$$

#### Gaussian $\beta$ corners process

(Okounkov-Olshanski, 97', Neretin, 03')

(Gorin-Xu-Z., 24') Airy $_{\beta}$  line ensemble is the edge limit of Gaussian corners process

i.e., 
$$\lim_{N \to \infty} \frac{N^{1/6}}{\sqrt{2\beta}} \left( \lambda_i^{N-tN^{2/3}} - \sqrt{2\beta(N-tN^{2/3})} \right)$$

# History of line ensembles and our approach

30 s
1000
500
-500
-1000
-1000
0
1000 (μm)

 $\beta=2$ : Airy line ensemble, central in KPZ (through RSK correspondence) (formulas in Prahofer-Spohn, 01'; continuity by Corwin-Hammond, 11')

Much less known for other  $\beta$ : less structure; and tri-diagonal matrix does not extend

- $\diamondsuit$  (Sodin, 13')  $\beta = 1,2,4$  using Hermitian matrix model; convergence for corners and DBM
- $\clubsuit$  (Landon, 20')  $\beta \ge 1$ , convergence of DBM, Cauchy sequence arguments
- ❖ (Gorin–Kleptsyn, 21')  $\beta = \infty$ , distribution formulas, limit of corners and DBM ( $\beta$ ,  $N \to \infty$  simultaneously)

Our approach extract moments of DBM/corners using Dunkl differential operators acting on multivariate Bessel generating functions

i.e., 
$$\mathcal{D}_{\mathbf{i}} = \frac{\partial}{\partial x_i} + \frac{\beta}{2} \sum_{j \neq i} \frac{1 - \sigma_{ij}}{x_i - x_j}$$
 acting on  $\mathbb{E}\left[\mathcal{B}_{Y_1(t), \dots, Y_N(t)}(x_1, \dots, x_N; \beta)\right] = \exp\left(\frac{t}{2} \sum_{i=1}^N x_i^2\right)$ 

## The Laplace formula

$$\mathbb{E}\left[\prod_{j=1}^{m}\left(\sum_{i=1}^{\infty}\exp\left(\alpha_{j}\mathcal{A}_{i}^{\beta}(t_{j})\right)\right)\right]=L_{\beta}\left(\vec{\alpha},\vec{t}\right)$$

#### First moment (m = 1)

- $\clubsuit$  Blocks: finitely many piece-wise constant functions  $\{p_i\}_{i=1}^k$  on  $[0, \alpha_1]$
- **❖** Brownian excursion  $B: [0, \alpha_1] \to \mathbb{R}_{\geq 0}$

$$\int_{\Omega} \operatorname{sgn} \left( \{ p_i \}_{i=1}^k \right) \mathbb{E} \left[ \exp \left( \int_0^{\alpha_1} B(t) - \sum_{i=1}^k p_i(t) \, \mathrm{d}t \right) \mathbf{1} [B \in \text{constraints}] \right] \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots + p_k}{B}) \, \mathrm{d}\mu (\{ p_i \}_{i=1}^k \frac{p_1 + \dots +$$

#### Higher moments (assuming $t_1 \leq \cdots \leq t_m$ , WLOG)

 $\{p_i\}_{i=1}^k$  and B are on  $[0,\alpha_1+\cdots+\alpha_m]$ ; B is a concatenation of Brownian bridges, under some conditioning

$$\int_{\Omega} \operatorname{sgn}\left(\{p_i\}_{i=1}^k\right) \exp\left(\sum_{i=1}^{m-1} (t_i - t_{i+1}) B(\alpha_1 + \dots + \alpha_i)/2\right) \mathbb{E}\left[\exp\left(\int_0^{\alpha_1 + \dots + \alpha_m} B(t) - \sum_{i=1}^k p_i(t) \, \mathrm{d}t\right) \mathbf{1}[B \in \text{constraints}]\right] \, \mathrm{d}\mu(\{p_i\}_{i=1}^k)$$



## More on universality

Beyond DBM and Gaussian  $\beta$  corners, many processes are expected to converge to the Airy $_{\beta}$  line ensemble Some **continuous time** diffusions:

- DBM with general potential  $dY_i(t) = \frac{\beta}{2} \sum_{j \neq i} \frac{dt}{Y_i(t) Y_j(t)} + V'(Y_i(t)) dt + dB_i(t)$  (Langevin dynamics of  $\beta$  ensemble)
- Laguerre process (König-O'Connell, 01')  $dY_i(t) = \left(n + \sum_{j \neq i} \frac{Y_i(t) + Y_j(t)}{Y_i(t) Y_j(t)}\right) dt + 2\sqrt{\frac{Y_i(t)}{\beta}} dB_i(t)$  (\$\beta = 1,2,4\$: eigenvalues of \$X\_t X\_t^\*\$, with \$(X\_t)\_{ij}\$ being independent Brownian motions)
- Jacobi process (Demni, 09')  $dY_i(t) = \left(p mY_i(t) + \sum_{j \neq i} \frac{Y_i(t) Y_i^2(t) + Y_j(t) Y_j^2(t)}{Y_i(t) Y_j(t)}\right) dt + 2\sqrt{\frac{Y_i(t)(1 Y_i(t))}{\beta}} dB_i(t)$ ( $\beta = 1,2,4$ : Brownian motions in orthogonal/unitary group)

#### Some discrete models:

- Laguerre/Jacobi corners process: 'corners' in Wishart/MANOVA matrices for Jacobi, eigenvalues ( $XX^*(XX^* + Y_{[k]}Y_{[k]}^*)^{-1}$ ), with  $Y_{[k]}$  = first k columns of Y (Borodin-Gorin, 13'; Sun, 16')
- More general interlacing sequences (Gelfand-Tsetlin Patterns): non-intersecting random walks, tiling, polymer, etc.
- Macdonald processes (Borodin-Corwin, 14'), and other general object in integrable probability

### Towards universality: characterization

(Huang-Z. 24') Any  $\{\lambda_i(t)\}_{i=1}^{\infty}$  must be the Airy<sub>\beta</sub> line ensemble, if the followings hold:

- $\square$   $\lambda_1(t)$  is tight in t
- Take  $S_t(z) = \sum_{i=1}^{\infty} \frac{1}{\lambda_i(t)-z} \frac{1}{a_i-z}$ . Then  $|S_t(z) \sqrt{z}| < C(t) \frac{\operatorname{Im}[\sqrt{z}]^{1-\delta}}{\operatorname{Im}[z]}$ , for z away from  $\mathbb R$

quadratic variation  $d\langle M_t(z), M_t(w) \rangle = \frac{2}{\beta} \partial_z \partial_w \frac{S_t(z) - S_t(w)}{z - w} dt$  Dyson Brownian motion + Ito's formula

Why/How to prove this?

General idea: think about Airy $_{\beta}$  line ensemble as infinite dimensional DBM, show 'uniqueness' of solution

For this, show mixing: two sets of particles under DBM get closer in time (appropriately coupled)

Many issues: infinite dimensional SDEs are not well-understood

Truncation? Then how to control boundaries? May be shift of each other?

**Solution** Stieltjes transformation (In its proof, eventually show poles get closer in time.)

## Towards universality

(Huang-Z. 24') Any  $\{\lambda_i(t)\}_{i=1}^{\infty}$  must be the Airy<sub>\beta</sub> line ensemble, if the followings hold:

- $\square$   $\lambda_1(t)$  is tight in t
- Take  $S_t(z) = \sum_{i=1}^{\infty} \frac{1}{\lambda_i(t)-z} \frac{1}{a_i-z}$ . Then  $|S_t(z) \sqrt{z}| < C(t) \frac{\operatorname{Im}[\sqrt{z}]^{1-\delta}}{\operatorname{Im}[z]}$ , for z away from  $\mathbb R$
- $dS_t(z) = \left(\frac{2-\beta}{2\beta}\partial_z^2 S_t(z) + \frac{1}{2}\partial_z S_t^2(z) \frac{1}{2}\right) dt + dM_t(z), \text{ where } M_t(z) \text{ is the Martingale part, with }$  quadratic variation  $d\langle M_t(z), M_t(w) \rangle = \frac{2}{\beta}\partial_z \partial_w \frac{S_t(z) S_t(w)}{z w} dt$

To apply it for convergence: (1) check tightness (2) verify SDE

Continuous time diffusions:

(Huang-Z. 24') The edge limit of DBM with general potential, Laguerre process, and Jacobi process is the Airy $_{\beta}$  line ensemble.

Discrete models: SDE from Markovian/Gibbs structure Tightness? (may from dynamical loop equation, Gorin-Huang, 22')