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Last passage percolation: background and the problem
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u

v

We study the directed last passage percolation (LPP) on Z2

ωv ∼ Exp(1), i.i.d. ∀v ∈ Z2

Passage time: Tu,v := maxγ
∑

w∈γ\{v} ωw

Geodesic: Γu,v := argmaxγ
∑

w∈γ\{v} ωw
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Exactly solvable in the KPZ universality class.

Connections to TASEP

Evolution in exponential LPP:

Time 0: B0

time

direction

Time t : Bt = {v : maxu∈B0 Tu,v < t}
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Exactly solvable in the KPZ universality class.

T(0,0),(n,n) ∼ 4n (Rost, 1981).

2−4/3n−1/3(T(0,0),(n,n) − 4n) converges weakly to the GUE
Tracy-Widom distribution (Johansson, 2000).

Joint distribution of different end points (space direction):
Point to line profile (step initial data): stationary Airy2 process
minus a parabola (Borodin and Ferrari, 2008)

Ln(x) := 2−4/3n−1/3
(

T(0,0),(n−x(2n)2/3,n+x(2n)2/3)−4n
)
⇒ A2(x)−x2

Line to line profile (flat initial data): stationary Airy1 process
(Borodin, Ferrari, and Prähofer, 2007; Borodin, Ferrari, Prähofer,
and Sasamoto, 2007). Let Xv := maxx T(−x,x),v

x 7→ 2−4/3n−1/3
(

X(n−x(2n)2/3,n+x(2n)2/3) − 4n
)
⇒ 21/3A1(2−2/3x)

General initial data: KPZ fixed point (Matetski, Quastel, and
Remenik, 2017).
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
Two time covariance was studied by P. L. Ferrari and Spohn,
2016, conjectures on behaviours when τ → 0 and 1 (experimental
and numerical by Singha, 2005; Takeuchi and Sano, 2012).
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
Two time covariance was studied by P. L. Ferrari and Spohn,
2016, conjectures on behaviours when τ → 0 and 1 (experimental
and numerical by Singha, 2005; Takeuchi and Sano, 2012).
Exact asymptotic formulae for the two time distribution: Brownian
and geometric LPP (Johansson, 2017, 2019; Johansson and
Rahman, 2019), exponential LPP with different initial condition
(Baik and Liu, 2019; Liu, 2019).
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
In P. L. Ferrari and Occelli, 2019, convergence of covariance is
proved for step/flat/stationary initial data;
and for step initial data (also by Basu and Ganguly, 2018):

lim
n→∞

n−2/3Cov(T(0,0),(n,n),T(0,0),(τn,τn)) =

{
Θ(τ2/3) τ → 0
C −Θ((1− τ)2/3) τ → 1.
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
In P. L. Ferrari and Occelli, 2019, convergence of covariance is
proved for step/flat/stationary initial data;
and for step initial data (also by Basu and Ganguly, 2018):

lim
n→∞

n−2/3Cov(T(0,0),(n,n),T(0,0),(τn,τn)) =

{
Θ(τ2/3) τ → 0
C −Θ((1− τ)2/3) τ → 1.

The τ → 1 behaviour is shown to be universal.
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
One remaining question of P. L. Ferrari and Spohn, 2016 is the
τ → 0 behaviour of

ρ(τ) := lim
n→∞

n−2/3Cov(Xτn,Xn).
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Different time distribution of the passage time

(0, 0)

(r, r)

(n, n)

x + y = 0

Xn

Xr
Case of flat initial data

Scale: r = τn and n→∞.
One remaining question of P. L. Ferrari and Spohn, 2016 is the
τ → 0 behaviour of

ρ(τ) := lim
n→∞

n−2/3Cov(Xτn,Xn).

Theorem (Basu, Ganguly, and Z., 2019)

As τ → 0, we have ρ(τ) = τ4/3+o(1).
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Proof ideas: geometric arguments and Brownian
comparison
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Heuristic

u0

(r, r)

(n, n)

x + y = 0

x + y = 2r

Xn

Xrr2/3

r2/3

Typical: distance between u0 and
(r , r) is ∼ n2/3; little interaction

u0 (r, r)

(n, n)

x + y = 0

x + y = 2r

Xn

Xr

r2/3

With probability ∼ (r/n)2/3,
overlap for ∼ r length, contribute

r2/3 to covariance

=⇒ Cov(Xr ,Xn) = Θ((r/n)2/3r2/3)
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General approach

Make these rigorous: construct geometric events about
geodesics: their weights and transversal fluctuations.

The profile from x + y = 2r to (n,n): {T(r−x,r+x),(n,n)}x∈Z

umax

(r, r)

(n, n)

x + y = 0

x + y = 2r

Distance of umax and (r , r)� r2/3, and
decaying profile: u0 likely to be far

umax (r, r)

(n, n)

x + y = 0

x + y = 2r

Distance of umax and (r , r)� r2/3, and
decaying profile: u0 likely to be close
and geodesics coalesce

Use Brownian comparison of Airy2 process (Calvert, Hammond,
and Hegde, 2019, based on Brownian Gibbs property)
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Upper bound

Theorem (Upper Bound)

There exist C1,C2 > 0 such that for any δ ∈ (0,1/2) there is
n0(δ) ∈ R+ with the following property: for any n, r ∈ Z+ with
δn < r < n

2 and n > n0(δ) we have

Cov(Xr ,Xn) ≤ C1

( r
n

)4/3
exp

(
−C2 log(r/n)5/6

)
n2/3.

u0 umax

(r, r)

(n, n)

x + y = 0

x + y = 2r

We need verify
(i) umax uniformly distributed in a size n2/3

interval
(ii) u0 is close to umax.
As Airy2 process is locally Brownian:
(i) argmax uniformly distributed.
(ii) Around maxima looks like Brownian
motion conditioned below zero.
Bound Radon-Nikodym derivative of
Airy2 over Brownian motion
=⇒ lose a sub-polynomial factor.
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Upper bound

u0 umax

(r, r)

(n, n)

x + y = 0

x + y = 2r

log(j)10 r2/3

Some technical details:

Divide into segments Lj of length Polynomial(j)r2/3

Sample randomness above x + y = 2r , decompose Cov(Xr ,Xn)
by conditioned on umax ∈ Lj , for each j .
Xr ≈ restricted within box, Xn ≈ restricted outside box.
Brownian comparison and transversal estimate of geodesics.
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Xr ≈ restricted within box, Xn ≈ restricted outside box.
Brownian comparison and transversal estimate of geodesics.
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Lower bound

Theorem (Lower Bound)

There exists C3 > 0 such that for any δ ∈ (0,1/2) there is n0(δ) ∈ R+

with the following property: for any n, r ∈ Z+ with δn < r < n
2 and

n > n0(δ) we have

Cov(Xr ,Xn) ≥ C3

( r
n

)4/3
n2/3.

Developed upon arguments for the step initial data case of Basu and
Ganguly, 2018.

θr2/3

u0 (r, r)

(n, n)

x + y = 0

x + y = 2r

Idea: construct event with probability
& (r/n)2/3 where coalesce happens.
Restrict to box of size θr2/3 × r
=⇒ force coalescing.
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Lower bound

θr2/3

θ−30 r2/3

θ−30 r2/3

u0 (r, r)

(n, n)

x + y = 0

x + y = 2r

Profile from x + y = 2r to (n,n): umax within θr2/3 neighbor of
(r , r), and parabolic decay (probability & (r/n)2/3).

Also Brownian comparison, plus translation invariance of A2.
Small weight geodesics in two neighboring θ−30r2/3 × r boxes
(constant probability).

=⇒ Both Xr and Xn − X r
n are close to Xθ (best path weight restricted

to green box), and Var(Xθ) & θ−1/2r2/3.
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Comments

Our arguments are mostly geometric, robust and works for more
general initial data.
i.e. we can replace Xr ,Xn by

Xπ
r := max

x
(T(−x,x),(r ,r) + π(x)) , Xπ

n := max
x

(T(−x,x),(n,n) + π(x)),

where π : Z→ R satisfies
(i) π(0) = 0.
(ii) |π(x)| ≤ C|x |1/2−s, ∀x ∈ Z, for some s ∈ (0,1/2) and some

C > 0.
For upper bound: possible to remove the factor of
exp

(
− log(r/n)5/6

)
.

Need better bounds for Brownian comparison of Airy2:

P
[

max
x∈I
A2(x)− x2 > max

x∈[−2M,2M]
A2(x)− x2 −

√
|I|
]
≤ C|I|,

for any I ⊂ [−M,M].
Attempt: use formula of Airy2 process.
Not easy to analyze, and difficulties in controlling tail events
where maxx∈I A2(x)− x2 is too large or small.

Lingfu Zhang Princeton LPP temporal correlation April 29, 2020



Comments

Our arguments are mostly geometric, robust and works for more
general initial data.
i.e. we can replace Xr ,Xn by

Xπ
r := max

x
(T(−x,x),(r ,r) + π(x)) , Xπ

n := max
x

(T(−x,x),(n,n) + π(x)),

where π : Z→ R satisfies
(i) π(0) = 0.
(ii) |π(x)| ≤ C|x |1/2−s, ∀x ∈ Z, for some s ∈ (0,1/2) and some

C > 0.

For upper bound: possible to remove the factor of
exp

(
− log(r/n)5/6

)
.

Need better bounds for Brownian comparison of Airy2:

P
[

max
x∈I
A2(x)− x2 > max

x∈[−2M,2M]
A2(x)− x2 −

√
|I|
]
≤ C|I|,

for any I ⊂ [−M,M].
Attempt: use formula of Airy2 process.
Not easy to analyze, and difficulties in controlling tail events
where maxx∈I A2(x)− x2 is too large or small.

Lingfu Zhang Princeton LPP temporal correlation April 29, 2020



Comments

Our arguments are mostly geometric, robust and works for more
general initial data.
i.e. we can replace Xr ,Xn by

Xπ
r := max

x
(T(−x,x),(r ,r) + π(x)) , Xπ

n := max
x

(T(−x,x),(n,n) + π(x)),

where π : Z→ R satisfies
(i) π(0) = 0.
(ii) |π(x)| ≤ C|x |1/2−s, ∀x ∈ Z, for some s ∈ (0,1/2) and some

C > 0.
For upper bound: possible to remove the factor of
exp

(
− log(r/n)5/6

)
.

Need better bounds for Brownian comparison of Airy2:

P
[

max
x∈I
A2(x)− x2 > max

x∈[−2M,2M]
A2(x)− x2 −

√
|I|
]
≤ C|I|,

for any I ⊂ [−M,M].

Attempt: use formula of Airy2 process.
Not easy to analyze, and difficulties in controlling tail events
where maxx∈I A2(x)− x2 is too large or small.

Lingfu Zhang Princeton LPP temporal correlation April 29, 2020



Comments

Our arguments are mostly geometric, robust and works for more
general initial data.
i.e. we can replace Xr ,Xn by

Xπ
r := max

x
(T(−x,x),(r ,r) + π(x)) , Xπ

n := max
x

(T(−x,x),(n,n) + π(x)),

where π : Z→ R satisfies
(i) π(0) = 0.
(ii) |π(x)| ≤ C|x |1/2−s, ∀x ∈ Z, for some s ∈ (0,1/2) and some

C > 0.
For upper bound: possible to remove the factor of
exp

(
− log(r/n)5/6

)
.

Need better bounds for Brownian comparison of Airy2:

P
[

max
x∈I
A2(x)− x2 > max

x∈[−2M,2M]
A2(x)− x2 −

√
|I|
]
≤ C|I|,

for any I ⊂ [−M,M].
Attempt: use formula of Airy2 process.
Not easy to analyze, and difficulties in controlling tail events
where maxx∈I A2(x)− x2 is too large or small.

Lingfu Zhang Princeton LPP temporal correlation April 29, 2020



Thank you!
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