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The models: TASEP, colors, six-vertex
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TASEP and LPP

Totally Asymmetric Simple Exclusion Process (TASEP), and growing
surface:
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TASEP and LPP

TASEP with step initial configuration also corresponds to Last Passage
Percolation (LPP) with fixed starting point.

(0, 0)

v

LPP on Z2:
ξ(v) ∼ Exp(1), i.i.d. ∀v ∈ Z2

Passage time: Lu,v := maxγ
∑

w∈γ ξ(w)
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Known Results on LPP/Corner growth

(0, 0)

v

L(0,0),(n,n) ∼ 4n (Rost, 1981).
2−4/3n−1/3(L(0,0),(n,n) − 4n) converges weakly to the GUE
Tracy-Widom distribution (Johansson, 2000).
Point to line profile (Borodin and Ferrari, 2008)

2−4/3n−1/3
(

L(0,0),(n−x(2n)2/3,n+x(2n)2/3) − 4n
)

⇒ A2(x)− x2

A2 is stationary and absolute continuous with respect to
Brownian motion (Corwin and Hammond, 2014).
KPZ fixed point (Matetski, Quastel, and Remenik, 2017)
Airy sheet (Dauvergne, Ortmann, and Virág, 2018).
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TASEP with colors

One particle at each integer, and the particle at i is labeled i .

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

Rule of update: if a < b, then with rate 1:

a b b a

but
b a a b

Alternative description: a family of coupled step initial TASEPs, by con-
sidering all particles ≤ i .

· · ·

· · ·
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Stochastic Colored 6-Vertex Model: a discrete analogue

A general model in integrable probability (figures from Vadim):
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Symmetry
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Symmetries for the colored TASEP

Let ζt : Z → Z be the configuration of the colored TASEP at time
t . In particular, ζ0 is the identity map.

The following has the same distribution as ζt :
x 7→ ζt(x − y) + y for any y ∈ Z
x 7→ −ζt(−x)

ζ−1
t (color-to-position symmetry, see e.g. Amir, Angel, and

Valkó, 2011; Angel, Holroyd, and Romik, 2009; Borodin and
Bufetov, 2021)
New shift/flip invariance by Borodin, Gorin, and Wheeler,
2019; Galashin, 2020, from the colored stochastic 6-vertex
model
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Some recent developments on integrable models

Height function in the colored stochastic 6-vertex model (figure from
Vadim).

H≥i(x , y): number of paths with color ≥ i to the right of/below (x , y).

Theorem (Borodin, Gorin, and Wheeler, 2019)

Let 1 ≤ τ ≤ n, and k ′
i = ki + 1[i = τ ], U ′

i = Ui + (0,1[i = τ ]).
Under intersection conditions, we have{

H≥ki (Ui)
}n

i=1
d
=

{
H≥k ′

i (U ′
i )
}n

i=1
.

Extended by Galashin, 2020 and Dauvergne, 2020.
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New shift-invariance for colored TASEP

Passage times in colored TASEP:

T A
B,C = inf{t ≥ 0 : |{x ≥ A + B + 1 − C : ζt(x) ≤ A}| ≥ C}.

Corresponds to: LPP time L(1,1),(B,C).
(recall: {x : ζt(x) ≤ A} gives step initial TASEP)

One can degenerate the results in Galashin, 2020 to the following:

Theorem
Let 1 ≤ τ ≤ n and A+

i = Ai + 1[i > τ ]. Under intersection conditions,

max
i

T Ai
Bi ,Ci

d
= max

i
T A+

i
Bi ,Ci

.

We get a stronger result for this.

Theorem (Zhang, 2021)

Let 1 ≤ τ ≤ g and A+
i,j = Ai,j + 1[i > τ ]. Under intersection conditions,{

max
1≤j≤ki

T Ai,j

Bi,j ,Ci,j

}g

i=1

d
=

{
max

1≤j≤ki

T
A+

i,j

Bi,j ,Ci,j

}g

i=1
.
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New shift-invariance for colored TASEP

Theorem (Zhang, 2021)

Let 1 ≤ τ ≤ g and A+
i,j = Ai,j + 1[i > τ ]. Under intersection conditions,{

max
1≤j≤ki

T Ai,j

Bi,j ,Ci,j

}g

i=1

d
=

{
max

1≤j≤ki

T
A+

i,j

Bi,j ,Ci,j

}g

i=1
.

The intersection conditions:

Ai,j ≤ Ai′,j′ , A+
i,j + Bi,j ≥ A+

i′,j′ + Bi′,j′ , A+
i,j − Ci,j ≥ A+

i′,j′ − Ci′,j′ ,

for any 1 ≤ i < i ′ ≤ g and 1 ≤ j ≤ ki ,1 ≤ j ′ ≤ ki′ .

For example: by using it repeatedly, for each N we have{
T 1

N−k,k
}N−1

k=1
d
=

{
T k

N−k,k
}N−1

k=1
.

Previously, only know that the maximum are equal in distribution.
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The Oriented Swap Process
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Sorting Network

A shortest path in the group SN , from (1, · · · ,N) to (N, · · · ,1), swap-
ping two neighboring numbers at a time.

N(N−1)
2 steps, swap i , j to j , i if i < j .

1 Uniform measure
2 Oriented Swap Process: Markovian according to Poisson Clocks

(Angel, Holroyd, and Romik, 2009).

A simulation with N = 1000 (from Angel, Holroyd, and Romik, 2009).
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OSP and colored TASEP

OSP can be viewed as the colored TASEP on an interval [1,N].

In Angel, Holroyd, and Romik, 2009, some truncation operators are
used to connect TASEP on Z with TASEP on an interval.

In particular: single particle trajectory; the finishing time of a single
particle has fluctuation of ∼ N1/3 with GUE Tracy-Widom limit.

Absorbing time: the time when the OSP terminates.

Question
What are the fluctuations and limiting law of the absorbing time?
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A conjecture on the finishing times

Take UN = (UN(1), . . . ,UN(N − 1)), where UN(k) is the last time such
that a swap happens between the sites k and k + 1.

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin,
and Romik, 2020)

UN
d
= {L(1,1),(k,N−k)}N−1

k=1 .

Some results
1 Single k .
2 N ≤ 6 (computer-assisted).

3 max1≤k≤N−1 UN(k)
d
= max1≤k≤N−1 L(1,1),(k,N−k)

⇒ OSP absorbing time converges to GOE Tracy-Widom.
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Result on OSP and implications

Theorem (Zhang, 2021)

UN
d
= {L(1,1),(k,N−k)}N−1

k=1 .

Some implications (using the asymptotic results of LPP):
1 Under N2/3, N1/3 scaling, UN converges to the parabolic Airy2

process.
2 Consider k∗ such that the last swap is between sites k∗ and

k∗ + 1; then N−2/3(k∗ − N/2) converges.
3 In scale smaller than N2/3, UN converges to simple random walk.

Lingfu Zhang Princeton LPP geodesic environment Nov 11, UW-Madison Probability Seminar



Result on OSP and implications

Theorem (Zhang, 2021)

UN
d
= {L(1,1),(k,N−k)}N−1

k=1 .

Some implications (using the asymptotic results of LPP):
1 Under N2/3, N1/3 scaling, UN converges to the parabolic Airy2

process.
2 Consider k∗ such that the last swap is between sites k∗ and

k∗ + 1; then N−2/3(k∗ − N/2) converges.
3 In scale smaller than N2/3, UN converges to simple random walk.

Lingfu Zhang Princeton LPP geodesic environment Nov 11, UW-Madison Probability Seminar



Proof ideas
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From the colored TASEP shift invariance to OSP finishing times:

{L(1,1),(k,N−k)}N−1
k=1

d
=

{
T 1

N−k,k
}N−1

k=1
d
=

{
T k

N−k,k
}N−1

k=1
d
= UN .

Use truncation operators from Angel, Holroyd, and Romik, 2009.
(Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example
Take B,C ≥ 2. Goal: show that T 0

B,1,T
0
1,C

d
= T 0

B,1,T
1
1,C .

T 0
B,1,T

0
1,C : TASEP with labels ≤ 0
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0
1,C

d
= T 0

B,1,T
1
1,C .

T 0
B,1,T

0
1,C : TASEP with labels ≤ 0

T 0
B,1,T

1
1,C :

Since time T 0
2,1, the blue particle is to the right of the red particle

⇒ independent evolution.
Need ‘equal’ in distribution of the configurations at T 0

2,1;

Use max{T 0
B′,1,T

0
1,C′}

d
= max{T 0

B′,1,T
1
1,C′}.

General: inductive arguments
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Further questions
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Questions?

1 Can some of the constraints be relaxed?

For P[T A1
B1,C1

< t1,T A2
B2,C2

< t2] = P[T A1
B1,C1

< t1,T
A′

2
B2,C2

< t2], need
(1) A1 ≤ A2,A′

2
(2) A1 − C1 ≥ A2 − C2,A′

2 − C2
(3) A1 + B1 ≥ A2 + B2,A′

2 + B2

For t1 = t2, just need (1) and
(4) A1 + B1 − C1 ≥ A2 + B2 − C2,A′

2 + B2 − C2
Note that (1)+(2)+(3) implies (1)+(4).

For t1 ≤ t2, need (1) (3) (4).
Question: what is the key property? Crossing of paths?

2 Scaling limit of the colored TASEP?

Two families of TASEPs: LPP and colored TASEP.
LPP → Airy Sheet
(x , y) 7→ n−1/3(L(xn2/3,−xn2/3),(n−yn2/3,n+yn2/3) − 4n)
Colored TASEP?
(x , y) 7→ n−1/3(T n2/3x

n+n2/3(y−x),n−n2/3(y−x) − 4n)?
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Thank you!
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