Shift-Invariance of the Colored TASEP

Lingfu Zhang

Princeton University
Department of Mathematics

November 11, 2021
UW-Madison Probability Seminar
arXiv:2107.06350

The models: TASEP, colors, six-vertex

TASEP and LPP

Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:

TASEP and LPP

Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:

TASEP and LPP

Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:

Rotate by $\frac{\pi}{4}$, this corresponds to a corner growth process:

TASEP and LPP

Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:

Rotate by $\frac{\pi}{4}$, this corresponds to a corner growth process:

TASEP and LPP

TASEP with step initial configuration also corresponds to Last Passage Percolation (LPP) with fixed starting point.

LPP on \mathbb{Z}^{2} :
$\square \xi(v) \sim \operatorname{Exp}(1)$, i.i.d. $\forall v \in \mathbb{Z}^{2}$
$■$ Passage time: $L_{u, v}:=\max _{\gamma} \sum_{w \in \gamma} \xi(w)$

Known Results on LPP/Corner growth

- $L_{(0,0),(n, n)} \sim 4 n$ (Rost, 1981).
$\square 2^{-4 / 3} n^{-1 / 3}\left(L_{(0,0),(n, n)}-4 n\right)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).
■ Point to line profile (Borodin and Ferrari, 2008)

$$
2^{-4 / 3} n^{-1 / 3}\left(L_{(0,0),\left(n-x(2 n)^{2 / 3}, n+x(2 n)^{2 / 3}\right)}-4 n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}
$$

\mathcal{A}_{2} is stationary and absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014).
\square KPZ fixed point (Matetski, Quastel, and Remenik, 2017) Airy sheet (Dauvergne, Ortmann, and Virág, 2018).

TASEP with colors

One particle at each integer, and the particle at i is labeled i.

TASEP with colors

One particle at each integer, and the particle at i is labeled i.

Rule of update: if $a<b$, then with rate 1 :

$$
\text { (a)-(b) } \rightarrow \text { (b)-(a) }
$$

but

$$
\text { (b)-(a) } \rightarrow \text { (a)-(b) }
$$

TASEP with colors

One particle at each integer, and the particle at i is labeled i.

Rule of update: if $a<b$, then with rate 1 :

$$
\text { (a)-(b) } \rightarrow \text { (b)-(a) }
$$

but

$$
\text { (b)-(a) } \rightarrow \text { (a)-(b) }
$$

Alternative description: a family of coupled step initial TASEPs, by considering all particles $\leq i$.

Stochastic Colored 6-Vertex Model: a discrete analogue

A general model in integrable probability (figures from Vadim):

Stochastic Colored 6-Vertex Model: a discrete analogue

A general model in integrable probability (figures from Vadim):

Symmetry

Symmetries for the colored TASEP

Let $\zeta_{t}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the configuration of the colored TASEP at time t. In particular, ζ_{0} is the identity map.

The following has the same distribution as ζ_{t} :
$\square x \mapsto \zeta_{t}(x-y)+y$ for any $y \in \mathbb{Z}$
$\square x \mapsto-\zeta_{t}(-x)$
$\square \zeta_{t}^{-1}$ (color-to-position symmetry, see e.g. Amir, Angel, and Valkó, 2011; Angel, Holroyd, and Romik, 2009; Borodin and Bufetov, 2021)

- New shift/flip invariance by Borodin, Gorin, and Wheeler, 2019; Galashin, 2020, from the colored stochastic 6-vertex model

Some recent developments on integrable models

Height function in the colored stochastic 6-vertex model (figure from Vadim).

5	4	3	2	1	1	1	
4	3	2	1	1	0	0	
3	2	1	1	1	0	0	
2	1	0	0	0	0	0	
1	0	0	0	0	0	0	
0	0	0	0	0	0	0	

$\mathcal{H}^{\geq i}(x, y)$: number of paths with color $\geq i$ to the right of/below (x, y).

Some recent developments on integrable models

Height function in the colored stochastic 6-vertex model (figure from Vadim).

${ }^{\text {color }} 7$	4	3	2	1	1	1
4	3	2	1	1	0	0
color 5	2	1	1	1	0	0
2	1	0	0	0	0	0
1	0	0	0	0	0	0
0	0	0	0	0	0	0

$\mathcal{H}^{\geq i}(x, y)$: number of paths with color $\geq i$ to the right of/below (x, y).
Theorem (Borodin, Gorin, and Wheeler, 2019)
Let $1 \leq \tau \leq n$, and $k_{i}^{\prime}=k_{i}+\mathbb{1}[i=\tau], \mathcal{U}_{i}^{\prime}=\mathcal{U}_{i}+(0, \mathbb{1}[i=\tau])$.
Under intersection conditions, we have

$$
\left\{\mathcal{H}^{\geq k_{i}}\left(\mathcal{U}_{i}\right)\right\}_{i=1}^{n} \stackrel{d}{=}\left\{\mathcal{H}^{\geq k_{i}^{\prime}}\left(\mathcal{U}_{i}^{\prime}\right)\right\}_{i=1}^{n} .
$$

Extended by Galashin, 2020 and Dauvergne, 2020.

New shift-invariance for colored TASEP

Passage times in colored TASEP:

$$
T_{B, C}^{A}=\inf \left\{t \geq 0:\left|\left\{x \geq A+B+1-C: \zeta_{t}(x) \leq A\right\}\right| \geq C\right\}
$$

Corresponds to: LPP time $L_{(1,1),(B, C)}$. (recall: $\left\{x: \zeta_{t}(x) \leq A\right\}$ gives step initial TASEP)

New shift-invariance for colored TASEP

Passage times in colored TASEP:

$$
T_{B, C}^{A}=\inf \left\{t \geq 0:\left|\left\{x \geq A+B+1-C: \zeta_{t}(x) \leq A\right\}\right| \geq C\right\}
$$

Corresponds to: LPP time $L_{(1,1),(B, C)}$.
(recall: $\left\{x: \zeta_{t}(x) \leq A\right\}$ gives step initial TASEP)
One can degenerate the results in Galashin, 2020 to the following:

Theorem

Let $1 \leq \tau \leq n$ and $A_{i}^{+}=A_{i}+\mathbb{1}[i>\tau]$. Under intersection conditions,

$$
\max _{i} T_{B_{i}, C_{i}}^{A_{i}} \stackrel{d}{=} \max _{i} T_{B_{i}, C_{i}}^{A_{i}^{+}} .
$$

New shift-invariance for colored TASEP

Passage times in colored TASEP:

$$
T_{B, C}^{A}=\inf \left\{t \geq 0:\left|\left\{x \geq A+B+1-C: \zeta_{t}(x) \leq A\right\}\right| \geq C\right\}
$$

Corresponds to: LPP time $L_{(1,1),(B, C)}$.
(recall: $\left\{x: \zeta_{t}(x) \leq A\right\}$ gives step initial TASEP)
One can degenerate the results in Galashin, 2020 to the following:

Theorem

Let $1 \leq \tau \leq n$ and $A_{i}^{+}=A_{i}+\mathbb{1}[i>\tau]$. Under intersection conditions,

$$
\max _{i} T_{B_{i}, C_{i}}^{A_{i}} \stackrel{d}{=} \max _{i} T_{B_{i}, C_{i}}^{A_{i}^{+}} .
$$

We get a stronger result for this.

Theorem (Zhang, 2021)

Let $1 \leq \tau \leq g$ and $A_{i, j}^{+}=A_{i, j}+\mathbb{1}[i>\tau]$. Under intersection conditions,

$$
\left\{\max _{1 \leq j \leq k_{i}} T_{B_{i, j}, C_{i, j}}^{A_{i, j}}\right\}_{i=1}^{g} \stackrel{d}{=}\left\{\max _{1 \leq j \leq k_{i}} T_{B_{i, j}, C_{i, j}^{+}}^{A_{i, j}^{+}}\right\}_{i=1}^{g} .
$$

New shift-invariance for colored TASEP

Theorem (Zhang, 2021)

Let $1 \leq \tau \leq g$ and $A_{i, j}^{+}=A_{i, j}+\mathbb{1}[i>\tau]$. Under intersection conditions,

$$
\left\{\max _{1 \leq j \leq k_{i}} T_{B_{i, j}, C_{i, j}}^{A_{i, j}}\right\}_{i=1}^{g} \stackrel{d}{=}\left\{\max _{1 \leq j \leq k_{i}} T_{B_{i, j}, C_{i, j}^{+j}}^{A_{i, j}^{+}}\right\}_{i=1}^{g} .
$$

The intersection conditions:

$$
A_{i, j} \leq A_{i^{\prime}, j^{\prime}}, \quad A_{i, j}^{+}+B_{i, j} \geq A_{i^{\prime}, j^{\prime}}^{+}+B_{i^{\prime}, j^{\prime}}, \quad A_{i, j}^{+}-C_{i, j} \geq A_{i^{\prime}, j^{\prime}}^{+}-C_{i^{\prime}, j^{\prime}},
$$

for any $1 \leq i<i^{\prime} \leq g$ and $1 \leq j \leq k_{i}, 1 \leq j^{\prime} \leq k_{i^{\prime}}$.

New shift-invariance for colored TASEP

Theorem (Zhang, 2021)

Let $1 \leq \tau \leq g$ and $A_{i, j}^{+}=A_{i, j}+\mathbb{1}[i>\tau]$. Under intersection conditions,

$$
\left\{\max _{1 \leq j \leq k_{i}} T_{B_{i, j}, C_{i, j}}^{A_{i, j}}\right\}_{i=1}^{g} \stackrel{d}{=}\left\{\max _{1 \leq j \leq k_{i}} T_{B_{i, j}, C_{i, j}^{+}}^{A_{i, j}^{+}}\right\}_{i=1}^{g} .
$$

The intersection conditions:

$$
A_{i, j} \leq A_{i^{\prime}, j^{\prime}}, \quad A_{i, j}^{+}+B_{i, j} \geq A_{i^{\prime}, j^{\prime}}^{+}+B_{i^{\prime}, j^{\prime}}, \quad A_{i, j}^{+}-C_{i, j} \geq A_{i^{\prime}, j^{\prime}}^{+}-C_{i^{\prime}, j^{\prime}},
$$

for any $1 \leq i<i^{\prime} \leq g$ and $1 \leq j \leq k_{i}, 1 \leq j^{\prime} \leq k_{i^{\prime}}$.
For example: by using it repeatedly, for each N we have

$$
\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} .
$$

Previously, only know that the maximum are equal in distribution.

The Oriented Swap Process

Sorting Network

A shortest path in the group S_{N}, from $(1, \cdots, N)$ to $(N, \cdots, 1)$, swapping two neighboring numbers at a time.

$\frac{N(N-1)}{2}$ steps, swap i, j to j, i if $i<j$.

Sorting Network

A shortest path in the group S_{N}, from $(1, \cdots, N)$ to $(N, \cdots, 1)$, swapping two neighboring numbers at a time.

$\frac{N(N-1)}{2}$ steps, swap i, j to j, i if $i<j$.
11 Uniform measure
■ Oriented Swap Process: Markovian according to Poisson Clocks (Angel, Holroyd, and Romik, 2009).

Sorting Network

A shortest path in the group S_{N}, from $(1, \cdots, N)$ to $(N, \cdots, 1)$, swapping two neighboring numbers at a time.

$\frac{N(N-1)}{2}$ steps, swap i, j to j, i if $i<j$.
11 Uniform measure
■ Oriented Swap Process: Markovian according to Poisson Clocks (Angel, Holroyd, and Romik, 2009).

A simulation with $N=1000$ (from Angel, Holroyd, and Romik, 2009).

OSP and colored TASEP

OSP can be viewed as the colored TASEP on an interval $[1, N]$.
In Angel, Holroyd, and Romik, 2009, some truncation operators are used to connect TASEP on \mathbb{Z} with TASEP on an interval.

OSP and colored TASEP

OSP can be viewed as the colored TASEP on an interval $[1, N]$.
In Angel, Holroyd, and Romik, 2009, some truncation operators are used to connect TASEP on \mathbb{Z} with TASEP on an interval.

In particular: single particle trajectory; the finishing time of a single particle has fluctuation of $\sim N^{1 / 3}$ with GUE Tracy-Widom limit.

OSP and colored TASEP

OSP can be viewed as the colored TASEP on an interval $[1, N]$.
In Angel, Holroyd, and Romik, 2009, some truncation operators are used to connect TASEP on \mathbb{Z} with TASEP on an interval.
In particular: single particle trajectory; the finishing time of a single particle has fluctuation of $\sim N^{1 / 3}$ with GUE Tracy-Widom limit.
Absorbing time: the time when the OSP terminates.

Question

What are the fluctuations and limiting law of the absorbing time?

A conjecture on the finishing times

Take $\mathbf{U}_{N}=\left(U_{N}(1), \ldots, U_{N}(N-1)\right)$, where $U_{N}(k)$ is the last time such that a swap happens between the sites k and $k+1$.

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin, and Romik, 2020)
$\mathbf{U}_{N} \stackrel{d}{=}\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1}$.

A conjecture on the finishing times

Take $\mathbf{U}_{N}=\left(U_{N}(1), \ldots, U_{N}(N-1)\right)$, where $U_{N}(k)$ is the last time such that a swap happens between the sites k and $k+1$.

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin, and Romik, 2020)
$\mathbf{U}_{N} \stackrel{d}{=}\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1}$.
Some results
1 Single k.
■ $N \leq 6$ (computer-assisted).
उ $\max _{1 \leq k \leq N-1} U_{N}(k) \stackrel{d}{=} \max _{1 \leq k \leq N-1} L_{(1,1),(k, N-k)}$

A conjecture on the finishing times

Take $\mathrm{U}_{N}=\left(U_{N}(1), \ldots, U_{N}(N-1)\right)$, where $U_{N}(k)$ is the last time such that a swap happens between the sites k and $k+1$.

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin, and Romik, 2020)
$\mathbf{U}_{N} \stackrel{d}{=}\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1}$.
Some results
1 Single k.
■ $N \leq 6$ (computer-assisted).
$3 \max _{1 \leq k \leq N-1} U_{N}(k) \stackrel{d}{=} \max _{1 \leq k \leq N-1} L_{(1,1),(k, N-k)}$
\Rightarrow OSP absorbing time converges to GOE Tracy-Widom.

Result on OSP and implications

Theorem (Zhang, 2021)

$$
\mathbf{U}_{N} \stackrel{d}{=}\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} .
$$

Result on OSP and implications

Theorem (Zhang, 2021)

$$
\mathbf{U}_{N} \stackrel{d}{=}\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1}
$$

Some implications (using the asymptotic results of LPP):
IU Under $N^{2 / 3}, N^{1 / 3}$ scaling, \mathbf{U}_{N} converges to the parabolic Airy ${ }_{2}$ process.
』 Consider k_{*} such that the last swap is between sites k_{*} and $k_{*}+1$; then $N^{-2 / 3}\left(k_{*}-N / 2\right)$ converges.
в In scale smaller than $N^{2 / 3}, \mathbf{U}_{N}$ converges to simple random walk.

Proof ideas

From the colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N} .
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

From the colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N}
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example

Take $B, C \geq 2$. Goal: show that $T_{B, 1}^{0}, T_{1, C}^{0} \stackrel{d}{=} T_{B, 1}^{0}, T_{1, C}^{1}$.
$T_{B, 1}^{0}, T_{1, C}^{0}$: TASEP with labels ≤ 0

From colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N}
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example

Take $B, C \geq 2$. Goal: show that $T_{B, 1}^{0}, T_{1, C}^{0} \stackrel{d}{=} T_{B, 1}^{0}, T_{1, C}^{1}$.
$T_{B, 1}^{0}, T_{1, C}^{0}$: TASEP with labels ≤ 0

From colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N}
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example

Take $B, C \geq 2$. Goal: show that $T_{B, 1}^{0}, T_{1, C}^{0} \stackrel{d}{=} T_{B, 1}^{0}, T_{1, C}^{1}$.
$T_{B, 1}^{0}, T_{1, C}^{0}$: TASEP with labels ≤ 0

$T_{B, 1}^{0}, T_{1, C}^{1}:$

From colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N}
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example

Take $B, C \geq 2$. Goal: show that $T_{B, 1}^{0}, T_{1, C}^{0} \stackrel{d}{=} T_{B, 1}^{0}, T_{1, C}^{1}$.
$T_{B, 1}^{0}, T_{1, C}^{0}$: TASEP with labels ≤ 0

$T_{B, 1}^{0}, T_{1, C}^{1}:$

Since time $T_{2,1}^{0}$, the blue particle is to the right of the red particle \Rightarrow independent evolution.

From colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N}
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example

Take $B, C \geq 2$. Goal: show that $T_{B, 1}^{0}, T_{1, C}^{0} \stackrel{d}{=} T_{B, 1}^{0}, T_{1, C}^{1}$.
$T_{B, 1}^{0}, T_{1, C}^{0}$: TASEP with labels ≤ 0

$T_{B, 1}^{0}, T_{1, C}^{1}:$

Since time $T_{2,1}^{0}$, the blue particle is to the right of the red particle \Rightarrow independent evolution.
Need 'equal' in distribution of the configurations at $T_{2,1}^{0}$;
Use $\max \left\{T_{B^{\prime}, 1}^{0}, T_{1, C^{\prime}}^{0}\right\} \stackrel{d}{=} \max \left\{T_{B^{\prime}, 1}^{0}, T_{1, C^{\prime}}^{1}\right\}$.

From colored TASEP shift invariance to OSP finishing times:

$$
\left\{L_{(1,1),(k, N-k)}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{1}\right\}_{k=1}^{N-1} \stackrel{d}{=}\left\{T_{N-k, k}^{k}\right\}_{k=1}^{N-1} \stackrel{d}{=} \mathbf{U}_{N}
$$

Use truncation operators from Angel, Holroyd, and Romik, 2009. (Similar arguments appear in Bufetov, Gorin, and Romik, 2020).

Shift invariance: an example

Take $B, C \geq 2$. Goal: show that $T_{B, 1}^{0}, T_{1, C}^{0} \stackrel{d}{=} T_{B, 1}^{0}, T_{1, C}^{1}$.
$T_{B, 1}^{0}, T_{1, C}^{0}$: TASEP with labels ≤ 0

$T_{B, 1}^{0}, T_{1, C}^{1}:$

Since time $T_{2,1}^{0}$, the blue particle is to the right of the red particle \Rightarrow independent evolution.
Need 'equal' in distribution of the configurations at $T_{2,1}^{0}$;
Use max $\left\{T_{B^{\prime}, 1}^{0}, T_{1, C^{\prime}}^{0}\right\} \stackrel{d}{=} \max \left\{T_{B^{\prime}, 1}^{0}, T_{1, C^{\prime}}^{1}\right\}$.
General: inductive arguments

Further questions

Questions?

- Can some of the constraints be relaxed?

For $\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}}<t_{2}\right]=\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}^{\prime}}<t_{2}\right]$, need (1) $A_{1} \leq A_{2}, A_{2}^{\prime}$
(2) $A_{1}-C_{1} \geq A_{2}-C_{2}, A_{2}^{\prime}-C_{2}$
(3) $A_{1}+B_{1} \geq A_{2}+B_{2}, A_{2}^{\prime}+B_{2}$

Questions?

II Can some of the constraints be relaxed?
For $\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}}<t_{2}\right]=\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}^{\prime}}<t_{2}\right]$, need (1) $A_{1} \leq A_{2}, A_{2}^{\prime}$
(2) $A_{1}-C_{1} \geq A_{2}-C_{2}, A_{2}^{\prime}-C_{2}$
(3) $A_{1}+B_{1} \geq A_{2}+B_{2}, A_{2}^{\prime}+B_{2}$

For $t_{1}=t_{2}$, just need (1) and
(4) $A_{1}+B_{1}-C_{1} \geq A_{2}+B_{2}-C_{2}, A_{2}^{\prime}+B_{2}-C_{2}$

Note that (1) $+(2)+(3)$ implies (1) $+(4)$.

Questions?

II Can some of the constraints be relaxed?
For $\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}}<t_{2}\right]=\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}^{\prime}}<t_{2}\right]$, need (1) $A_{1} \leq A_{2}, A_{2}^{\prime}$
(2) $A_{1}-C_{1} \geq A_{2}-C_{2}, A_{2}^{\prime}-C_{2}$
(3) $A_{1}+B_{1} \geq A_{2}+B_{2}, A_{2}^{\prime}+B_{2}$

For $t_{1}=t_{2}$, just need (1) and
(4) $A_{1}+B_{1}-C_{1} \geq A_{2}+B_{2}-C_{2}, A_{2}^{\prime}+B_{2}-C_{2}$

Note that (1) $+(2)+(3)$ implies (1) $+(4)$.
For $t_{1} \leq t_{2}$, need (1) (3) (4).

Questions?

II Can some of the constraints be relaxed?
For $\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}}<t_{2}\right]=\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}^{\prime}}<t_{2}\right]$, need (1) $A_{1} \leq A_{2}, A_{2}^{\prime}$
(2) $A_{1}-C_{1} \geq A_{2}-C_{2}, A_{2}^{\prime}-C_{2}$
(3) $A_{1}+B_{1} \geq A_{2}+B_{2}, A_{2}^{\prime}+B_{2}$

For $t_{1}=t_{2}$, just need (1) and
(4) $A_{1}+B_{1}-C_{1} \geq A_{2}+B_{2}-C_{2}, A_{2}^{\prime}+B_{2}-C_{2}$

Note that (1) $+(2)+(3)$ implies (1) $+(4)$.
For $t_{1} \leq t_{2}$, need (1) (3) (4).
Question: what is the key property? Crossing of paths?

Questions?

II Can some of the constraints be relaxed?
For $\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}}<t_{2}\right]=\mathbf{P}\left[T_{B_{1}, C_{1}}^{A_{1}}<t_{1}, T_{B_{2}, C_{2}}^{A_{2}^{\prime}}<t_{2}\right]$, need
(1) $A_{1} \leq A_{2}, A_{2}^{\prime}$
(2) $A_{1}-C_{1} \geq A_{2}-C_{2}, A_{2}^{\prime}-C_{2}$
(3) $A_{1}+B_{1} \geq A_{2}+B_{2}, A_{2}^{\prime}+B_{2}$

For $t_{1}=t_{2}$, just need (1) and
(4) $A_{1}+B_{1}-C_{1} \geq A_{2}+B_{2}-C_{2}, A_{2}^{\prime}+B_{2}-C_{2}$

Note that (1) $+(2)+(3)$ implies (1) $+(4)$.
For $t_{1} \leq t_{2}$, need (1) (3) (4).
Question: what is the key property? Crossing of paths?
■ Scaling limit of the colored TASEP?
Two families of TASEPs: LPP and colored TASEP.
LPP \rightarrow Airy Sheet

$$
(x, y) \mapsto n^{-1 / 3}\left(L_{\left(x n^{2 / 3},-x n^{2 / 3}\right),\left(n-y n^{2 / 3}, n+y n^{2 / 3}\right)}-4 n\right)
$$

Colored TASEP?

$$
(x, y) \mapsto n^{-1 / 3}\left(T_{n+n^{2 / 3}(y-x), n-n^{2 / 3}(y-x)}^{n^{2 / 3} x}-4 n\right) ?
$$

Thank you!

Amir，G．，Angel，O．，\＆Valkó，B．（2011）．The tasep speed process．Ann．Probab．，39（4）， 1205－1242．
R Angel，O．，Holroyd，A．，\＆Romik，D．（2009）．The oriented swap process．Ann．Probab．， 37（5），1970－1998．
Risisi，E．，Cunden，F．D．，Gibbons，S．，\＆Romik，D．（2020）．The oriented swap process and last passage percolation［arXiv：2005．02043］．
Borodin，A．，\＆Bufetov，A．（2021）．Color－position symmetry in interacting particle sys－ tems．Ann．Probab．，49（4），1607－1632．
R－Borodin，A．，\＆Ferrari，P．L．（2008）．Large time asymptotics of growth models on space－ like paths I：PushASEP．Electron．J．Probab．，13，1380－1418．
國 Borodin，A．，Gorin，V．，\＆Wheeler，M．（2019）．Shift－invariance for vertex models and polymers［arXiv：1912．02957］．
T
Bufetov，A．，Gorin，V．，\＆Romik，D．（2020）．Absorbing time asymptotics in the ori－ ented swap process［arXiv：2003．06479］．
Corwin，I．，\＆Hammond，A．（2014）．Brownian gibbs property for airy line ensembles． Invent．Math．，195（2），441－508．
Dauvergne，D．，Ortmann，J．，\＆Virág，B．（2018）．The directed landscape［arXiv：1812．00309］．
Dauvergne，D．（2020）．Hidden invariance of last passage percolation and directed polymers［arXiv：2002．09459］．
园
Galashin，P．（2020）．Symmetries of stochastic colored vertex models［arXiv：2003．06350

Johansson, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys., 209(2), 437-476.
Matetski, K., Quastel, J., \& Remenik, D. (2017). The KPZ fixed point [arXiv:1701.00018].
Rost, H. (1981). Non-equilibrium behaviour of a many particle process: Density profile and local equilibria. Zeitschrift f. Warsch. Verw. Gebiete, 58(1), 41-53.
國 Zhang, L. (2021). Shift-invariance of the colored tasep and finishing times of the oriented swap process [arXiv:2107.06350].

