Random Lozenge tiling at cusp and the Pearcey process

Lingfu Zhang
Department of Statistics and the Miller Institute, UC Berkeley
Joint work with Jiaoyang Huang (UPenn) and Fan Yang (Tsinghua)

Random Tiling/Dimer Model

Dimer definition: uniformly chosen perfect matching of a graph. (covering by edges)

Square lattice: domino tiling
Honeycomb lattice: lozenge tiling

Random Tiling/Dimer Model

Also for domino tiling
3D visualization: a collection of boxes
$>$ Height function, then a random surface
For a tilable domain, the height function on boundary is determined.

Some motivations

$>$ Natural and beautiful!
$>$ Random surface: a toy model for 3D Ising (zero-temperature limit)
> Bijection with six-vertex (square ice) model (with certain parameters)

Primary interest: large scale behavior?

Law of large number:

(Cohn-Kenyon-Propp, 00) Consider a sequence of tilable domains
R_{1}, R_{2}, \ldots such that R_{n} / n converges to a simply connected set Ω
(with piecewise smooth boundary), and the boundary height function has scaling limit $h: \partial \Omega \rightarrow \mathbb{R}$.
Then for uniform random tiling, the rescaled height function $(x, y) \mapsto H_{n}(n x, n y) / n$ converges in probability to a deterministic function $H^{*}: \Omega \rightarrow \mathbb{R}$.
H^{*} is given by a variational formula (determined by Ω and h).

Primary interest: large scale behavior?

Law of large number:

(Cohn-Kenyon-Propp, 00) ... the rescaled height function $H_{n}(n x, n y) / n$ converges to a deterministic function $H^{*}: \Omega \rightarrow \mathbb{R}$.
∇H^{*} describes the slope, corresponding to the 'densities' of each type.
Liquid regions vs frozen regions

Next: fluctuation?

$>$ Global fluctuation: $(x, y) \mapsto H_{n}(n x, n y)-n H^{*}(x, y)$

Converges to Gaussian Free Field in liquid region

Predicted by Kenyon-Okounkov, 05'. The most general setting remains open.

For various domains: Kenyon, 00’; Borodin-Ferrari, 08'; Petrov, 13'; Berestycki-Laslier-Ray, 16'; Bufetov-Gorin, 17'; Chelkak-Laslier-Russkikh, 20'; Huang, 20’;
$>$ Local fluctuation: $H_{n}(n x+\cdot, n y+\cdot)-H_{n}(n x, n y)$: depends on (x, y)
(x, y) in frozen region: just one type
(x, y) in liquid region: $H_{n}(n x+\cdot, n y+\cdot)-H_{n}(n x, n y)$ converges to a translation invariant random function (determined by $\nabla H^{*}(x, y)$)

Special domains: Kenyon, 00'; Okounkov-Reshetikhin, 03'; Borodin-Kuan, 10'; Borodin-Gorin-Rains, 10'; Petrov, 14'; Chhita-Johansson, 16; Gorin, 17'; ...
Unversality (general domain): Aggarwal, 19'

Arctic curve

Arctic curve: boundary between liquid and frozen

From now, we consider polygonal domains

Arctic curve is algebraic for polygonal domains (using complex Burgers equation) (Kenyon-Okounkov, 05'; Astala-Duse-Prause-Zhong, 20')

Fluctuation around arctic curve

(Two other types for non-generic polygons: Airy-cusp and tacnode) For a generic polygonal domain, around its arctic curve:
$>$ Airy line ensemble at a smooth point $n^{2 / 3} \times n^{1 / 3}$

$>$ Pearcey process at a cusp point $n^{1 / 2} \times n^{1 / 4}$

\rightarrow GUE point process at a tang

Fluctuation around arctic curve

For a generic polygonal domain, around its arctic curve:
> Airy line ensemble at a smooth point
Universality proved in Aggarwal-Huang, 21'
$>$ Pearcey process at a cusp point Today: universality, Huang-Yang-Z., 23'
$>$ GUE point process at a tangent point
Universality proved in Aggarwal-Gorin, 21'

First proved for special domains (hexagon, trapezoid, ...)
Universality was then widely predicted
For Pearcey at cusp:
Okounkov-Reshetikhin, 05'; Duse-Johansson-Metcalfe, 15'; Adler-Johansson-van Moerbeke, 16'; Astala-Duse-PrauseZhong, 20'; Gorin, 21' (Lectures on random lozenge tilings).

Pearcey process

One vertical slice describes eigenvalues of random matrices (Brezin-Hikami, 98’)
Tracy-Widom, 04': scaling limit of non-intersecting Brownian bridges

Okounkov-Reshetikhin, 05': tiling in a special infinite domain

Pearcey process

Main result (Huang-Yang-Z., 23')

For any generic simply connected polygonal domain, around any cusp point of its arctic curve, the associated paths (under $n^{1 / 2} \times n^{1 / 4}$ scaling) converge to the Pearcey process, in the sense of point processes.
(Can be upgraded to uniform convergence)

Proof strategy

High level idea: compare with known special settings

More 'interior', more subtle

Tangent point: cut a trapezoid

 (Aggarwal-Gorin, 21’)Need:
Boundary fluctuation
is $o\left(n^{1 / 2}\right)$

Smooth point: take a box (Aggarwal-Huang, 21')

Compare with Hexagon,
use monotonicity
(sandwich
between two)
Hope:
Boundary
fluctuation is
$o\left(n^{1 / 3}\right)$;
Not true!

Cusp point

More 'interior':
fluctuation even grows!
No sandwiching argument

Cusp universality: main steps

Compare with non-intersecting Bernoulli random walks (NBRW)

- Bernoulli (β) random walks conditional on non-intersect up to time ∞
- Markov chain with transition probability

$$
\begin{aligned}
& \mathbb{P}\left[X(\mathrm{t}+1)=\left(\mathrm{y}-M, \ldots, \mathrm{y}_{N}\right) \mid X(\mathrm{t})=\left(\mathrm{x}-M, \ldots, \mathrm{x}_{N}\right)\right] \\
= & (1-\beta)^{M+N+1} \prod_{-M \leq i \leq N}\left(\frac{\beta}{1-\beta}\right)^{\mathrm{y}_{i}-\mathrm{x}_{i}} \prod_{-M \leq i<j \leq N} \frac{\left(\mathrm{y}_{i}-\mathrm{y}_{j}\right)}{\left(\mathrm{x}_{i}-\mathrm{x}_{j}\right)}
\end{aligned}
$$

A special case of lozenge tiling: 'free' from top/bottom/right

More tractable formulas
(Petrov, 12'; Gorin-Petrov, 17'; ...)

Cusp universality: main steps

The comparison:

> Take the slice at distance $n \Delta t$ from cusp
$>$ Consider NBRW from this slice (slope parameter β to be determined)

Step 1. (Almost) optimal rigidity for both (deduced from Huang 21';Aggarwal-Huang, 21') Step 2. $o\left(n^{1 / 4}\right)$ close in expectation Step 3. NBRW from any 'typical' boundary gives the same Pearcey process

Step 1. (Almost) optimal rigidity

For each $x_{i}(t)$, the 'gap' around is
$\sim n^{-1} \partial_{x} H^{*}\left(-t, x_{i}(t) / n\right)^{-1}$
(Deduced from Huang, 21'; Aggarwal-Huang, 21')
With high probability,

$$
\left|x_{i}(t n)-n \gamma_{i}(t)\right|<n^{\epsilon} \partial_{x} H^{*}\left(t, \gamma_{i}(t)\right)^{-1}
$$

for each t and $i .\left(\gamma_{i}(t)\right.$ is the i-th quantile)
In particular (to the left of cusp)

$$
\begin{array}{ll}
\left|x_{i}(-t n)-n \gamma_{i}(-t)\right|<n^{1 / 4+\epsilon}|i|^{-1 / 4}, & |i|>t^{2} n \\
\left|x_{i}(-t n)-n \gamma_{i}(-t)\right|<n^{1 / 3+\epsilon} t^{1 / 6}|i|^{-1 / 3}, & |i|<t^{2} n
\end{array}
$$

(to the right of cusp)

$$
\begin{array}{ll}
\left|x_{i}(t n)-n \gamma_{i}(t)\right|<n^{1 / 4+\epsilon}|i|^{-1 / 4}, & |i|>t^{2} n \\
\left|x_{i}(t n)-n \gamma_{i}(t)\right|<n^{\epsilon} t^{-1 / 2}, & |i|<t^{2} n
\end{array}
$$

Same for NBRW
(but potentially different cusp location and γ_{i} !)

Step 2. Compare deterministic part

Use Burger's equation (but extend to complex plane; Kenyon-Okounkov, 05')

$$
\partial_{t} f+\partial_{z} f \frac{f}{f+1}=0
$$

Reduced to comparing f with different initial conditions (evolving for time Δt)
$>$ Cusp locations: distance $<n(\Delta t)^{2}$
> Upper/lower boundary:

$$
\left|n \gamma_{L}(t)-n \gamma_{L}^{\prime}(t)\right|<n^{1+\epsilon}(\Delta t)^{5 / 2}
$$

for $L=n^{1+2 \epsilon}(\Delta t)^{2},|t|<\Delta t$
$>$ Right boundary: for $|i|<L$,

$$
\left|n \gamma_{i}(\Delta t)-n \gamma_{i}^{\prime}(\Delta t)\right|<n^{1+\epsilon}(\Delta t)^{2} .
$$

Comparison (tiling vs NBRW): deterministic + fluctuation

$L=n^{1+2 \epsilon}(\Delta t)^{2}$
Deterministic:
Upper/lower/right boundary expectation differ by $n^{1+\epsilon}(\Delta t)^{2}$

Fluctuation:
Upper/lower fluctuates by
$<n^{1 / 4+\epsilon} L^{-1 / 4}=n^{-\epsilon / 2}(\Delta t)^{-1 / 2}$
Right fluctuates by $<n^{\epsilon}(\Delta t)^{-1 / 2}$
Can take $\Delta t=\boldsymbol{n}^{-0.49}$, then all $\ll \boldsymbol{n}^{1 / 4}$
\rightarrow Tiling and NBRW are the same

Step 3. Cusp universality for NBRW

Consider any NBRW with initial data $\left\{x_{i}\right\}_{i=-M}^{N}$, such that for some
$n^{-1 / 2+\epsilon}<t_{0}<n^{-\epsilon}$, and $E_{+}-E_{-} \sim t_{0}^{3 / 2}$,

$$
x_{i}-n E_{+} \sim t_{0}^{1 / 6} n^{1 / 3} i^{2 / 3}, \quad n E_{-}-x_{-i} \sim t_{0}^{1 / 6} n^{1 / 3} i^{2 / 3}
$$

when $i<t^{2} n$,

$$
x_{i}-n E_{+} \sim n^{1 / 4} i^{3 / 4}, \quad n E_{-}-x_{-i} \sim n^{1 / 4} i^{3 / 4}
$$

when $i>t^{2} n$.
Then can find x_{*} and $t_{*} \sim t_{0}$, and p, q, r, such that around $\left(n t_{*}, x_{*}\right)$, with scale $p n^{1 / 2}$ and $q n^{1 / 4}$, and slope r, there is 'roughly' Pearcey process.

Asymptotic analysis for formulas of NBRW from Gorin-Petrov, 16'; steepest descent method Special case done in Okounkov-Reshetikhin, 05'
This is a 'small-distance' result ($n t_{*}<n^{1-\epsilon}$) and is subtle

Summary and further comments

For lozenge tiling in a generic simply connected polygonal domain, we prove cusp universality of the Pearcey process, by
$>$ carefully comparing tiling and NBRW (using optimal rigidity from
Huang, 21'; Aggarwal-Huang 21' as an input)
>deriving a small-scale cusp universality for NBRW
(doing refined asymptotic analysis for formulas)

Beyond polygon?

Can be subtle: sensitive to microscopic boundary perturbation

How boundary perturbation affects scaling?

Thank you!

Some figures are from Petrov's website.
(https://Ipetrov.cc/2016/08/Tilings-examples-inline/) and the textbook Lectures on random lozenge tilings by Gorin

