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Random Tiling/Dimer Model
Dimer definition: uniformly chosen perfect matching of a graph.

(covering by edges)

Square lattice: domino tiling Honeycomb lattice: lozenge tiling



Random Tiling/Dimer Model

3D visualization: a collection of boxes

Also for domino tiling

 Height function, then a random surface
For a tilable domain, the height function on boundary is determined.



Some motivations

 Natural and beautiful!
 Random surface: a toy model for 3D Ising

(zero-temperature limit)
 Bijection with six-vertex (square ice) 

model (with certain parameters)



Primary interest: large scale behavior?
Law of large number:

(Cohn-Kenyon-Propp, 00) Consider a sequence of tilable domains 
𝑅𝑅1,𝑅𝑅2, … such that 𝑅𝑅𝑛𝑛/𝑛𝑛 converges to a simply connected set Ω
(with piecewise smooth boundary), and the boundary height 
function has scaling limit ℎ: 𝜕𝜕Ω → ℝ.
Then for uniform random tiling, the rescaled height function 
(𝑥𝑥,𝑦𝑦) ↦ 𝐻𝐻𝑛𝑛(𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦)/𝑛𝑛 converges in probability to a deterministic
function 𝐻𝐻∗:Ω → ℝ.
𝐻𝐻∗ is given by a variational formula (determined by Ω and ℎ).



Primary interest: large scale behavior?
Law of large number:

(Cohn-Kenyon-Propp, 00) … the rescaled 
height function 𝐻𝐻𝑛𝑛(𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦)/𝑛𝑛 converges to 
a deterministic function 𝐻𝐻∗:Ω → ℝ.

∇𝐻𝐻∗ describes the slope, corresponding to 
the ‘densities’ of each type.

Liquid regions vs frozen regions

∇𝐻𝐻∗𝐻𝐻∗



Next: fluctuation?
Global fluctuation: 𝑥𝑥, 𝑦𝑦 ↦ 𝐻𝐻𝑛𝑛 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 − 𝑛𝑛𝐻𝐻∗(𝑥𝑥,𝑦𝑦)
Converges to Gaussian Free Field in liquid region
Predicted by Kenyon-Okounkov, 05’. The most general setting remains open.

For various domains: Kenyon, 00’; Borodin-Ferrari, 08’; Petrov, 13’; Berestycki-Laslier-Ray, 16’; Bufetov-Gorin, 17’; Chelkak-Laslier-Russkikh, 20’; Huang, 20’; …  

Local fluctuation: 𝐻𝐻𝑛𝑛 𝑛𝑛𝑥𝑥 + ⋅,𝑛𝑛𝑦𝑦 + ⋅ − 𝐻𝐻𝑛𝑛(𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦) : depends on (𝑥𝑥,𝑦𝑦)
𝑥𝑥, 𝑦𝑦 in frozen region: just one type
𝑥𝑥, 𝑦𝑦 in liquid region: 𝐻𝐻𝑛𝑛 𝑛𝑛𝑥𝑥 + ⋅,𝑛𝑛𝑦𝑦 + ⋅ − 𝐻𝐻𝑛𝑛(𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦) converges to a translation 

invariant random function (determined by ∇𝐻𝐻∗(𝑥𝑥,𝑦𝑦))

Unversality (general domain): Aggarwal, 19’
Special domains: Kenyon, 00’; Okounkov-Reshetikhin, 03’; Borodin-Kuan, 10’; Borodin-Gorin-Rains, 10’; Petrov, 14’; Chhita-Johansson, 16; Gorin, 17’; … 



Arctic curve
Arctic curve: boundary between liquid and frozen

From now, we consider polygonal domains
Arctic curve is algebraic for polygonal domains (using 
complex Burgers equation)
(Kenyon-Okounkov, 05’; Astala-Duse-Prause-Zhong, 20’)



Fluctuation around arctic curve
(Two other types for non-generic polygons: Airy-cusp and tacnode)

For a generic polygonal domain, around its arctic curve:
 Airy line ensemble at a smooth point 𝑛𝑛2/3 × 𝑛𝑛1/3

 Pearcey process at a cusp point 𝑛𝑛1/2 × 𝑛𝑛1/4

 GUE point process at a tangent point 𝑛𝑛1/2 × 1



Fluctuation around arctic curve
For a generic polygonal domain, around its arctic curve:
 Airy line ensemble at a smooth point
 Pearcey process at a cusp point
 GUE point process at a tangent point

First proved for special domains (hexagon, 
trapezoid, … )
Universality was then widely predicted
For Pearcey at cusp: 
Okounkov-Reshetikhin, 05’; Duse-Johansson-Metcalfe, 15’; 
Adler-Johansson-van Moerbeke, 16’; Astala-Duse-Prause-
Zhong, 20’; Gorin, 21’ (Lectures on random lozenge tilings)… 

Universality proved in Aggarwal-Huang, 21’

Universality proved in Aggarwal-Gorin, 21’
Today: universality, Huang-Yang-Z., 23’



Pearcey process

Tracy-Widom, 04’: scaling limit of non-intersecting Brownian bridges

Okounkov-Reshetikhin, 05’: 
tiling in a special infinite domain

One vertical slice describes eigenvalues of random matrices (Brezin-Hikami, 98’)



Pearcey process
Main result (Huang-Yang-Z., 23’)

For any generic simply connected polygonal 
domain, around any cusp point of its arctic curve, 
the associated paths (under 𝑛𝑛1/2 × 𝑛𝑛1/4 scaling) 
converge to the Pearcey process, in the sense of 
point processes.

(Can be upgraded to uniform convergence)



Proof strategy
High level idea: compare with known special settings

Tangent point: cut a trapezoid
(Aggarwal-Gorin, 21’)
Need: 
Boundary fluctuation 
is 𝑜𝑜(𝑛𝑛1/2)

Smooth point: take a box
(Aggarwal-Huang, 21’)

Hope: 
Boundary 
fluctuation is 
𝑜𝑜(𝑛𝑛1/3);
Not true!  

Cusp point

More ‘interior’: 
fluctuation even grows!
No sandwiching argument

Compare with 
Hexagon, 
use monotonicity 
(sandwich 
between two)

More ‘interior’, more subtle



Cusp universality: main steps
Compare with non-intersecting Bernoulli random walks (NBRW)

A special case of lozenge tiling: 
‘free’ from top/bottom/right

•Bernoulli(𝛽𝛽) random walks conditional on non-intersect up to time ∞
•Markov chain with transition probability

More tractable formulas

(Petrov, 12’; Gorin-Petrov, 17’; … )



Cusp universality: main steps
The comparison:

𝑛𝑛Δ𝑡𝑡

 Take the slice at distance 𝑛𝑛Δ𝑡𝑡
from cusp

 Consider NBRW from this slice
(slope parameter 𝛽𝛽 to be determined)

Step 1. (Almost) optimal rigidity for both
(deduced from Huang 21’;Aggarwal-Huang, 21’)
Step 2. 𝑜𝑜(𝑛𝑛1/4) close in expectation
Step 3. NBRW from any ‘typical’ 
boundary gives the same Pearcey process



Step 1. (Almost) optimal rigidity

(−𝒏𝒏𝒏𝒏,𝒏𝒏𝑬𝑬− −𝒏𝒏 )

For each 𝑥𝑥𝑖𝑖(𝑡𝑡), the ‘gap’ around is 
∼ 𝑛𝑛−1𝜕𝜕𝑥𝑥𝐻𝐻∗(−𝑡𝑡, 𝑥𝑥𝑖𝑖(𝑡𝑡)/𝑛𝑛)−1
(Deduced from Huang, 21’; Aggarwal-Huang, 21’)
With high probability, 

𝑥𝑥𝑖𝑖(𝑡𝑡𝑛𝑛) − 𝑛𝑛𝑛𝑛𝑖𝑖(𝑡𝑡) < 𝑛𝑛𝜖𝜖𝜕𝜕𝑥𝑥𝐻𝐻∗ 𝑡𝑡, 𝑛𝑛𝑖𝑖(𝑡𝑡) −1

for each 𝑡𝑡 and 𝑖𝑖. (𝑛𝑛𝑖𝑖(𝑡𝑡) is the 𝑖𝑖-th quantile) 𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑
…

Same for NBRW 
(but potentially different cusp location and 𝑛𝑛𝑖𝑖!)

In particular (to the left of cusp)
𝑥𝑥𝑖𝑖(−𝑡𝑡𝑛𝑛) − 𝑛𝑛𝑛𝑛𝑖𝑖(−𝑡𝑡) < 𝑛𝑛1/4+𝜖𝜖|𝑖𝑖|−1/4, |𝑖𝑖| > 𝑡𝑡2𝑛𝑛
𝑥𝑥𝑖𝑖(−𝑡𝑡𝑛𝑛) − 𝑛𝑛𝑛𝑛𝑖𝑖(−𝑡𝑡) < 𝑛𝑛1/3+𝜖𝜖𝑡𝑡1/6|𝑖𝑖|−1/3, |𝑖𝑖| < 𝑡𝑡2𝑛𝑛

(to the right of cusp)
𝑥𝑥𝑖𝑖(𝑡𝑡𝑛𝑛) − 𝑛𝑛𝑛𝑛𝑖𝑖(𝑡𝑡) < 𝑛𝑛1/4+𝜖𝜖|𝑖𝑖|−1/4, |𝑖𝑖| > 𝑡𝑡2𝑛𝑛
𝑥𝑥𝑖𝑖(𝑡𝑡𝑛𝑛) − 𝑛𝑛𝑛𝑛𝑖𝑖(𝑡𝑡) < 𝑛𝑛𝜖𝜖𝑡𝑡−1/2, |𝑖𝑖| < 𝑡𝑡2𝑛𝑛

(𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏)

(−𝒏𝒏𝒏𝒏,𝒏𝒏𝑬𝑬+ −𝒏𝒏 )



Step 2. Compare deterministic part
Use Burger’s equation (but extend to complex plane; 
Kenyon-Okounkov, 05’)

𝜕𝜕𝑡𝑡𝑓𝑓 + 𝜕𝜕𝑧𝑧𝑓𝑓
𝑓𝑓

𝑓𝑓 + 1 = 0

Reduced to comparing 𝑓𝑓 with different initial conditions 
(evolving for time Δ𝑡𝑡)

𝑛𝑛Δ𝑡𝑡

 Cusp locations: distance < 𝑛𝑛 Δ𝑡𝑡 2

 Upper/lower boundary:
𝑛𝑛𝑛𝑛𝐿𝐿 𝑡𝑡 − 𝑛𝑛𝑛𝑛𝐿𝐿′(𝑡𝑡) < 𝑛𝑛1+𝜖𝜖(Δ𝑡𝑡)5/2 , 

for 𝐿𝐿 = 𝑛𝑛1+2𝜖𝜖 Δ𝑡𝑡 2, 𝑡𝑡 < Δ𝑡𝑡
 Right boundary: for 𝑖𝑖 < 𝐿𝐿,

𝑛𝑛𝑛𝑛𝑖𝑖 Δ𝑡𝑡 − 𝑛𝑛𝑛𝑛𝑖𝑖′(Δ𝑡𝑡) < 𝑛𝑛1+𝜖𝜖(Δ𝑡𝑡)2 .

𝑥𝑥𝐿𝐿

𝑥𝑥−𝐿𝐿



Comparison (tiling vs NBRW): 
deterministic + fluctuation

𝐿𝐿 = 𝑛𝑛1+2𝜖𝜖 Δ𝑡𝑡 2

Deterministic:

Upper/lower/right boundary expectation 
differ by 𝑛𝑛1+𝜖𝜖(Δ𝑡𝑡)2

Fluctuation:

Upper/lower fluctuates by 
< 𝑛𝑛1/4+𝜖𝜖 𝐿𝐿−1/4 = 𝑛𝑛−𝜖𝜖/2(Δ𝑡𝑡)−1/2

Right fluctuates by < 𝑛𝑛𝜖𝜖 (Δ𝑡𝑡)−1/2

Can take 𝚫𝚫𝒏𝒏 = 𝒏𝒏−𝟎𝟎.𝟒𝟒𝟒𝟒, then all ≪ 𝒏𝒏𝟏𝟏/𝟒𝟒

Tiling and NBRW are the same

𝑛𝑛Δ𝑡𝑡

𝑥𝑥𝐿𝐿

𝑥𝑥−𝐿𝐿



Step 3. Cusp universality for NBRW
Consider any NBRW with initial data 𝑥𝑥𝑖𝑖 𝑖𝑖=−𝑀𝑀

𝑁𝑁 , such that for some 
𝑛𝑛−1/2+𝜖𝜖 < 𝑡𝑡0 < 𝑛𝑛−𝜖𝜖, and 𝐸𝐸+ − 𝐸𝐸− ∼ 𝑡𝑡0

3/2,
𝑥𝑥𝑖𝑖 − 𝑛𝑛𝐸𝐸+ ∼ 𝑡𝑡0

1/6𝑛𝑛1/3𝑖𝑖2/3, 𝑛𝑛𝐸𝐸− − 𝑥𝑥−𝑖𝑖 ∼ 𝑡𝑡0
1/6𝑛𝑛1/3𝑖𝑖2/3

when 𝑖𝑖 < 𝑡𝑡2𝑛𝑛,
𝑥𝑥𝑖𝑖 − 𝑛𝑛𝐸𝐸+ ∼ 𝑛𝑛1/4𝑖𝑖3/4, 𝑛𝑛𝐸𝐸− − 𝑥𝑥−𝑖𝑖 ∼ 𝑛𝑛1/4𝑖𝑖3/4

when 𝑖𝑖 > 𝑡𝑡2𝑛𝑛.

(𝑛𝑛𝑡𝑡∗, 𝑥𝑥∗)

𝒏𝒏𝑬𝑬+

𝒏𝒏𝑬𝑬−
Then can find 𝑥𝑥∗ and 𝑡𝑡∗ ∼ 𝑡𝑡0, and 𝑝𝑝, 𝑞𝑞, 𝑟𝑟, such that around (𝑛𝑛𝑡𝑡∗, 𝑥𝑥∗), with 
scale 𝑝𝑝𝑛𝑛1/2 and 𝑞𝑞𝑛𝑛1/4, and slope 𝑟𝑟, there is ‘roughly’ Pearcey process.

This is a ‘small-distance’ result (n𝑡𝑡∗ < 𝑛𝑛1−𝜖𝜖) and is subtle

Asymptotic analysis for formulas of NBRW from Gorin-Petrov, 16’; steepest descent method

Special case done in Okounkov-Reshetikhin, 05’  



Summary and further comments
For lozenge tiling in a generic simply connected polygonal domain, we 
prove cusp universality of the Pearcey process, by

carefully comparing tiling and NBRW (using optimal rigidity from 
Huang, 21’; Aggarwal-Huang 21’ as an input)

deriving a small-scale cusp universality for NBRW
(doing refined asymptotic analysis for formulas)

Beyond polygon?
Can be subtle: sensitive to microscopic boundary 
perturbation

How boundary perturbation affects scaling?



Thank you!

Some figures are from Petrov’s website.
(https://lpetrov.cc/2016/08/Tilings-examples-inline/)
and the textbook Lectures on random lozenge tilings by Gorin

https://lpetrov.cc/2016/08/Tilings-examples-inline/
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