Constructing extremal stationary distributions for the Voter Model in $d \geq 3$ as factors of IID

Lingfu Zhang
(Joint work with Allan Sly)

Princeton University
Department of Mathematics

October 24, 2019

Schedule

1 Problem \& background

2 Proof by construction

3 Further questions

Problem \& background

Voter Model on Lattice

Voter Model on $\mathbb{Z}^{d}: \eta_{x}^{(t)}$ flips with rate $\#\left\{y \sim x: \eta_{x}^{(t)} \neq \eta_{y}^{(t)}\right\}$.

Voter Model on Lattice

Voter Model on $\mathbb{Z}^{d}: \eta_{x}^{(t)}$ flips with rate $\#\left\{y \sim x: \eta_{x}^{(t)} \neq \eta_{y}^{(t)}\right\}$.

Voter Model on Lattice

Voter Model on $\mathbb{Z}^{d}: \eta_{x}^{(t)}$ flips with rate $\#\left\{y \sim x: \eta_{x}^{(t)} \neq \eta_{y}^{(t)}\right\}$.

Extremal stationary distributions

- This defines a Markov process on $\{0,1\}^{\mathbb{Z}^{d}}$, with transition operator $\left\{\mathcal{M}_{t}\right\}_{t \in \mathbb{R}_{+}}$.
\square Take initial distribution to be $\rho_{p}:=\operatorname{Bern}(p)^{\mathbb{Z}^{d}}$, for $p \in[0,1]$.
\square Weak limit $\mu_{p}:=\lim _{t \rightarrow \infty} \mathcal{M}_{t} \rho_{p}$ exists and is a stationary distribution.

Extremal stationary distributions

- This defines a Markov process on $\{0,1\}^{\mathbb{Z}^{d}}$, with transition operator $\left\{\mathcal{M}_{t}\right\}_{t \in \mathbb{R}_{+}}$.
\square Take initial distribution to be $\rho_{p}:=\operatorname{Bern}(p)^{\mathbb{Z}^{d}}$, for $p \in[0,1]$.
\square Weak limit $\mu_{p}:=\lim _{t \rightarrow \infty} \mathcal{M}_{t} \rho_{p}$ exists and is a stationary distribution.

A stationary distribution is extremal if it is not a linear combination of other stationary distributions.

Extremal stationary distributions

- This defines a Markov process on $\{0,1\}^{\mathbb{Z}^{d}}$, with transition operator $\left\{\mathcal{M}_{t}\right\}_{t \in \mathbb{R}_{+}}$.
\square Take initial distribution to be $\rho_{p}:=\operatorname{Bern}(p)^{\mathbb{Z}^{d}}$, for $p \in[0,1]$.
\square Weak limit $\mu_{p}:=\lim _{t \rightarrow \infty} \mathcal{M}_{t} \rho_{p}$ exists and is a stationary distribution.

A stationary distribution is extremal if it is not a linear combination of other stationary distributions.

When $d \geq 3,\left\{\mu_{p}\right\}_{p \in[0,1]}$ are all the extremal stationary distributions.

Duality with Coalescing Random Walk

Construct $\mathcal{M}_{t} \rho_{p}$ via duality:
r Run colaescing random walk (CRW) $\left\{A_{t}\right\}_{t \in \mathbb{R}_{+}}$.
■ Color each cluster with $\operatorname{Bern}(p)$.

Duality with Coalescing Random Walk

Construct $\mathcal{M}_{t} \rho_{p}$ via duality:
r Run colaescing random walk (CRW) $\left\{A_{t}\right\}_{t \in \mathbb{R}_{+}}$.
■ Color each cluster with $\operatorname{Bern}(p)$.

Extremal stationary distributions

$\square d=1,2$: random walk is recurrent, there is a unique cluster in CRW as $t \rightarrow \infty$, so $\mu_{p}=p \mu_{1}+(1-p) \mu_{0}$.

Extremal stationary distributions

■ $d=1,2$: random walk is recurrent, there is a unique cluster in CRW as $t \rightarrow \infty$,

$$
\text { so } \mu_{p}=p \mu_{1}+(1-p) \mu_{0}
$$

$\square d \geq 3$: random walk is transient, $\left\{\mu_{p}\right\}_{p \in[0,1]}$ are all the extremal stationary distributions

Generalized Divide and Color Model

The voter model distributions are in a more general family, studied by [Steif and Tykesson, 2017].
[1 Finite or countable set V, and a random partition/ equivalence relation (RER) on it.
2. A parameter $p \in[0,1]$, and color each partition element by 0 or 1 , independent $\sim \operatorname{Bern}(p)$.

Generalized Divide and Color Model

The voter model distributions are in a more general family, studied by [Steif and Tykesson, 2017].

- Finite or countable set V, and a random partition/ equivalence relation (RER) on it.
』 A parameter $p \in[0,1]$, and color each partition element by 0 or 1 , independent $\sim \operatorname{Bern}(p)$.

Examples:
r Voter model $\mathcal{M}_{t} \rho_{p}$ and stationary distribution μ_{p} : the RER is given by CRW.

Generalized Divide and Color Model

The voter model distributions are in a more general family, studied by [Steif and Tykesson, 2017].

- Finite or countable set V, and a random partition/ equivalence relation (RER) on it.
』 A parameter $p \in[0,1]$, and color each partition element by 0 or 1 , independent $\sim \operatorname{Bern}(p)$.

Examples:
r Voter model $\mathcal{M}_{t} \rho_{p}$ and stationary distribution μ_{p} : the RER is given by CRW.
a Ising model (and Potts model): the RER is given by the FK percolation, or random cluster model (RCM) via Edwards-Sokal coupling.

Factor of IID

■ IID process over a group: $\left(Y^{G}, \nu^{G}, G\right)$.
\square Factor $\mathcal{F}:\left(Y^{G}, \nu^{G}, G\right) \rightarrow(X, \mu, G)$.
$■$ In our case, $G=\mathbb{Z}^{d}$ translations, $X=\{0,1\}^{\mathbb{Z}^{d}}$.

Factor of IID

■ IID process over a group: $\left(Y^{G}, \nu^{G}, G\right)$.
$■$ Factor $\mathcal{F}:\left(Y^{G}, \nu^{G}, G\right) \rightarrow(X, \mu, G)$.
■ In our case, $G=\mathbb{Z}^{d}$ translations, $X=\{0,1\}^{\mathbb{Z}^{d}}$.
Equivalently (in our case), $\eta \sim\left(\{0,1\}^{\mathbb{Z}^{d}}, \mu\right)$ is a factor of IID if: there is a function $f: Y_{\mathbb{Z}^{d}} \rightarrow\{0,1\}$, and an IID process $\left\{\gamma_{x}\right\}_{x \in \mathbb{Z}^{d}}$, such that $\forall x \in \mathbb{Z}^{d}, \eta_{x}=f\left(T_{x} \gamma\right)$.
(T_{x} is the translation operator)

Factor of IID

■ IID process over a group: $\left(Y^{G}, \nu^{G}, G\right)$.
$■$ Factor $\mathcal{F}:\left(Y^{G}, \nu^{G}, G\right) \rightarrow(X, \mu, G)$.
■ In our case, $G=\mathbb{Z}^{d}$ translations, $X=\{0,1\}^{\mathbb{Z}^{d}}$.
Equivalently (in our case), $\eta \sim\left(\{0,1\}^{\mathbb{Z}^{d}}, \mu\right)$ is a factor of IID if: there is a function $f: Y^{\mathbb{Z}^{d}} \rightarrow\{0,1\}$, and an IID process $\left\{\gamma_{x}\right\}_{x \in \mathbb{Z}^{d}}$, such that $\forall x \in \mathbb{Z}^{d}, \eta_{x}=f\left(T_{x} \gamma\right)$.
(T_{x} is the translation operator)

An example that is not a factor of IID: $\eta \equiv 0$ or 1 , each with probability $1 / 2$.

■ IID process over a group: $\left(Y^{G}, \nu^{G}, G\right)$.
\square Factor $\mathcal{F}:\left(Y^{G}, \nu^{G}, G\right) \rightarrow(X, \mu, G)$.
■ In our case, $G=\mathbb{Z}^{d}$ translations, $X=\{0,1\}^{\mathbb{Z}^{d}}$.
Equivalently (in our case), $\eta \sim\left(\{0,1\}^{\mathbb{Z}^{d}}, \mu\right)$ is a factor of IID if: there is a function $f: Y^{\mathbb{Z}^{d}} \rightarrow\{0,1\}$, and an IID process $\left\{\gamma_{x}\right\}_{x \in \mathbb{Z}^{d}}$, such that $\forall x \in \mathbb{Z}^{d}, \eta_{x}=f\left(T_{x} \gamma\right)$.
(T_{x} is the translation operator)

An ergodic theory point of view:

\square When Y is finite, $\left(Y^{\mathbb{Z}}, \nu^{\mathbb{Z}}\right)$ is a Bernoulli shift.
■ Being a factor of IID \Longleftrightarrow (isomorphic to) Bernoulli shift (by Ornstein theory [Ornstein, 1970a][Ornstein, 1970b] and their generalizations to amenable groups [Ornstein and Weiss, 1987])

Factor of IID: questions of Steif and Tykesson

If RER is Bernoulli, and each cluster is finite, then the color process is also Bernoulli. e.g. CRW is Bernoulli $\Longrightarrow \mathcal{M}_{t} \rho_{p}$ is Bernoulli (for $t \in(0, \infty)$).

Factor of IID: questions of Steif and Tykesson

If RER is Bernoulli, and each cluster is finite, then the color process is also Bernoulli. e.g. CRW is Bernoulli $\Longrightarrow \mathcal{M}_{t} \rho_{p}$ is Bernoulli (for $t \in(0, \infty)$).

Question ([Steif and Tykesson, 2017, Question 7.20])
Give an example of a divide and color model, which has infinite clusters but the color process is Bernoulli.

Factor of IID: questions of Steif and Tykesson

If RER is Bernoulli, and each cluster is finite, then the color process is also Bernoulli. e.g. CRW is Bernoulli $\Longrightarrow \mathcal{M}_{t} \rho_{p}$ is Bernoulli (for $t \in(0, \infty)$).

Question ([Steif and Tykesson, 2017, Question 7.20])

Give an example of a divide and color model, which has infinite clusters but the color process is Bernoulli.

Steif and Tykesson suggest the stationary distribution of the Voter Model.

Question ([Steif and Tykesson, 2017, Question 7.18])

When $d \geq 3$, are the Voter Model extremal stationary distributions Bernoulli shifts?

Results

We give an affirmative answer to both questions.
Theorem ([Sly and Z., 2019])
When $d \geq 3$, for each $0 \leq p \leq 1, \mu_{p}$ is a factor of IID.

Proof by construction

General idea

Explicit construct μ_{p} :
$■$ Take $\eta^{\left(t_{k}\right)} \sim \mathcal{M}_{t_{k}} \rho_{p}$ for a growing sequence of time $\left\{t_{k}\right\}_{k \in \mathbb{Z}_{+}}$
\square Each $\eta^{\left(t_{k}\right)}$ is a factor of IID.

- Couple them in a translation invariant way, so that each $\mathbb{P}\left[\eta_{x}^{\left(t_{k}\right)} \neq \eta_{x}^{\left(t_{k+1}\right)}\right]$ is small.

Then $\eta^{\left(t_{k}\right)} \xrightarrow{\text { a.s. }} \eta \sim \mu_{p}$, and μ_{p} is a factor of IID.

General idea

Explicit construct μ_{p} :
$■$ Take $\eta^{\left(t_{k}\right)} \sim \mathcal{M}_{t_{k}} \rho_{p}$ for a growing sequence of time $\left\{t_{k}\right\}_{k \in \mathbb{Z}_{+}}$
\square Each $\eta^{\left(t_{k}\right)}$ is a factor of IID.

- Couple them in a translation invariant way, so that each $\mathbb{P}\left[\eta_{X}^{\left(t_{k}\right)} \neq \eta_{X}^{\left(t_{k+1}\right)}\right]$ is small.

Then $\eta^{\left(t_{k}\right)} \xrightarrow{\text { a.s. }} \eta \sim \mu_{p}$, and μ_{p} is a factor of IID.
Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$
(\Longleftrightarrow Run CRW from A_{t} to $A_{t+\Delta t}$, plus coloring).

General idea

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$ (\Longleftrightarrow run CRW from A_{t} to $A_{t+\Delta t}$, plus coloring).

General idea

Couple $\mathcal{M}_{t} \rho_{\rho}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$ (\Longleftrightarrow run CRW from A_{t} to $A_{t+\Delta t}$, plus coloring).

General idea

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$
(\Longleftrightarrow run CRW from A_{t} to $A_{t+\Delta t}$, plus coloring).

${ }^{\bullet} W$
${ }^{\bullet} w \quad{ }^{\bullet} x \quad{ }^{\bullet} x \quad{ }^{\bullet} x \quad{ }^{\bullet} z \quad{ }^{\circ} z$

CRW + independent coloring does not work: color change infinitely many times.

General idea

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$
(\Longleftrightarrow run CRW from A_{t} to $A_{t+\Delta t}$, plus coloring).

RER of $\mathcal{M}_{t+\Delta t} \rho_{p}$
CRW + independent coloring does not work: color change infinitely many times.
Need biased coupling based on coloring.

General idea: a simplified example on \mathbb{Z}

-1 Build a random tree structure: size $\sim 4^{k}$ at level k. (need randomness to make it translation invariant)

■

General idea: a simplified example on \mathbb{Z}

-1 Build a random tree structure: size $\sim 4^{k}$ at level k. (need randomness to make it translation invariant)
』 Do uniform random matching within each interval at each level.

General idea: a simplified example on \mathbb{Z}

- Random color by Bern p.

2
3

4

General idea: a simplified example on \mathbb{Z}

- Random color by Bern p.

■ Match randomly, try best to match clusters with same color.
3

4

General idea: a simplified example on \mathbb{Z}

- Random color by Bern p.
- Match randomly, try best to match clusters with same color.
s Change color when necessary.
4

General idea: a simplified example on \mathbb{Z}

- Random color by Bern p.
- Match randomly, try best to match clusters with same color.
s Change color when necessary.
${ }_{4}$ Repeat at next level.

General idea: a simplified example on \mathbb{Z}

- Random color by Bern p.
- Match randomly, try best to match clusters with same color.
s Change color when necessary.
© Repeat at next level.

Almost surely, each vertex changes color finitely many times.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

Construct CRW: add paths sequentially.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

Construct CRW: add paths sequentially.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

II Conditioned on some clusters and coloring.
© Sample path of a new walker based on its color.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

11 Conditioned on some clusters and coloring.
© Sample path of a new walker based on its color.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

II Conditioned on some clusters and coloring.
© Sample path of a new walker based on its color.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

II Conditioned on some clusters and coloring.
© Sample path of a new walker based on its color.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

$$
t+\Delta t
$$

Ideally, we have:
II Law of colors of walkers at t : $\operatorname{Bern}(p)$ independently.
■ Law of the paths: CRW.
s. Law of colors of each cluster between t and $t+\Delta t$: $\operatorname{Bern}(p)$ independently.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

Ideally, we have:
I. Law of colors of walkers at $t: \operatorname{Bern}(p)$ independently.
e Law of the paths: CRW.
s Law of colors of each cluster between t and $t+\Delta t$: $\operatorname{Bern}(p)$ independently.
These cannot hold at the same time unless
$\mathbb{P}[$ join red cluster] $=p$.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

$$
t+\Delta t
$$

Ideally, we have:

1. Law of colors of walkers at t : $\operatorname{Bern}(p)$ independently.
e Law of the paths: CRW.
s Law of colors of each cluster between t and $t+\Delta t$: $\operatorname{Bern}(p)$ independently.
These cannot hold at the same time unless
$\mathbb{P}[$ join red cluster] $=p$.
On average, $\mathbb{P}[j$ join red cluster] is p.
Change color when necessary.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

Control $\mathbb{P}[$ walker x changes color]:

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

Control $\mathbb{P}[$ walker x changes color]: $\leq \mathbb{E}[\mid \mathbb{P}[x$ joins red cluster|existing colored clusters $]-p \mid]$.

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

$t+\Delta t$

Control $\mathbb{P}[$ walker x changes color]:
$\leq \mathbb{E}[\mid \mathbb{P}[x$ joins red cluster|existing colored clusters $]-p \mid]$.
$\leq \mathbb{E}\left[\sum_{\text {cluster } Y} \mathbb{P}[x \text { joins } Y \mid \text { existing clusters }]^{2}\right]^{1 / 2}$
(Cauchy-Schwarz, integrating coloring)

Couple $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$: CRW from t to $t+\Delta t$

$$
t+\Delta t
$$

Control $\mathbb{P}[$ walker x changes color]:
$\leq \mathbb{E}[\mid \mathbb{P}[x$ joins red cluster|existing colored clusters $]-p \mid]$.
$\leq \mathbb{E}\left[\sum_{\text {cluster } Y} \mathbb{P}[x \text { joins } Y \mid \text { existing clusters }]^{2}\right]^{1 / 2}$
(Cauchy-Schwarz, integrating coloring)
$\leq \mathbb{E}\left[\sum_{x_{1}, x_{2} \in A_{t}} \mathbb{P}\left[x_{1}, x_{2}, x \text { in same cluster in CRW }\right]\right]^{1 / 2}$
$=O\left(\left(t^{-2}(\Delta t)^{3-d / 2}\right)^{1 / 2}\right) \quad$ (expand the clusters into particles)

Cannot impose ordering: divide into groups

Another question: cannot do sequential construction (in a translation invariant way).

Cannot impose ordering: divide into groups

Another question: cannot do sequential construction (in a translation invariant way).

Divide into groups:

Cannot impose ordering: divide into groups

Another question: cannot do sequential construction (in a translation invariant way).

Divide into groups:
${ }_{11}$ Randomly divide walkers into groups $G_{1}, G_{2}, \cdots, G_{M}$.

Cannot impose ordering: divide into groups

Another question: cannot do sequential construction (in a translation invariant way).

Divide into groups:

- Randomly divide walkers into groups $G_{1}, G_{2}, \cdots, G_{M}$.

■ Each group is sparse: avg. distance $\gg \sqrt{\Delta t}$.

Cannot impose ordering: divide into groups

Another question: cannot do sequential construction (in a translation invariant way).

Divide into groups:

- Randomly divide walkers into groups $G_{1}, G_{2}, \cdots, G_{M}$.

■ Each group is sparse: avg. distance $\gg \sqrt{\Delta t}$.
s Construct colored CRW for these groups sequentially; unlikely for a walker to hit another walker from the same group. (Prob arbitrarily small by taking M large)

Exponentially growing times

So far, we have coupled two times $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$.

Exponentially growing times

So far, we have coupled two times $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$.

■ Take $t=2^{k}$, couple $\eta^{\left(2^{k}\right)}$ and $\eta^{\left(2^{k+1}\right)}$, for each $k \in \mathbb{Z}_{+}$.

Exponentially growing times

So far, we have coupled two times $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$.

■ Take $t=2^{k}$, couple $\eta 2^{\left(2^{k}\right)}$ and $\eta{ }^{\left(2^{k+1}\right)}$, for each $k \in \mathbb{Z}_{+}$.
$\square \mathbb{P}\left[\eta_{x}^{\left(2^{k}\right)} \neq \eta_{x}^{\left(2^{k+1}\right)}\right] \leq\left(2^{k}\right)^{(1-d / 2) / 2}$.

Exponentially growing times

So far, we have coupled two times $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$.
\square Take $t=2^{k}$, couple $\eta^{\left(2^{k}\right)}$ and $\eta \eta^{\left(2^{k+1}\right)}$, for each $k \in \mathbb{Z}_{+}$.
$\square \mathbb{P}\left[\eta_{x}^{\left(2^{k}\right)} \neq \eta_{x}^{\left(2^{k+1}\right)}\right] \leq\left(2^{k}\right)^{(1-d / 2) / 2}$.
■ Sum over $k \in \mathbb{Z}_{+}$: each voter changes color finitely many times.

Exponentially growing times

So far, we have coupled two times $\mathcal{M}_{t} \rho_{p}$ and $\mathcal{M}_{t+\Delta t} \rho_{p}$.
$■$ Take $t=2^{k}$, couple $\eta 2^{\left(2^{k}\right)}$ and $\eta \eta^{\left(2^{k+1}\right)}$, for each $k \in \mathbb{Z}_{+}$.
$\square \mathbb{P}\left[\eta_{x}^{\left(2^{k}\right)} \neq \eta_{x}^{\left(2^{k+1}\right)}\right] \leq\left(2^{k}\right)^{(1-d / 2) / 2}$.
$■$ Sum over $k \in \mathbb{Z}_{+}$: each voter changes color finitely many times.
\Longrightarrow under the coupling $\eta^{\left(2^{k}\right)}$ converges almost surely, so μ_{p} is a factor of IID.

Further questions

Further questions

Are there other natural examples (to [Steif and Tykesson, 2017, Question 7.20])?

Further questions

Are there other natural examples (to [Steif and Tykesson, 2017, Question 7.20])?

Ising model:

Further questions

Are there other natural examples (to [Steif and Tykesson, 2017, Question 7.20])?

Ising model:
■ On \mathbb{Z}^{d}, the RER (FK percolation/RCM) has no infinite cluster when $\beta \leq \beta_{c}$
\Longrightarrow Ising model is a factor of IID. one unique infinite cluster when $\beta>\beta_{c}$
\Longrightarrow Ising model is not a factor of IID.

Further questions

Are there other natural examples (to [Steif and Tykesson, 2017, Question 7.20])?

Ising model:
$■$ On \mathbb{Z}^{d}, the RER (FK percolation/RCM) has no infinite cluster when $\beta \leq \beta_{c}$
\Longrightarrow Ising model is a factor of IID. one unique infinite cluster when $\beta>\beta_{c}$
\Longrightarrow Ising model is not a factor of IID.
\square On infinite d-reg tree, the RER has no infinite cluster when $(d-1) \tanh (\beta) \leq 1$
\Longrightarrow Ising model is a factor of IID.
reconstruction is possible when $(\alpha-1) \tanh ^{2}(\beta)>1$
\Longrightarrow Ising model is not a factor of IID. intermediate β : open; conjectured to be factor of IID [Lyons, 2017].

Thank you!

References I

Lyons，R．（2017）．
Factors of IID on trees．
Combin．Probab．Comput．，26（2）：285－300．
目
Ornstein，D．S．（1970a）．
Bernoulli shifts with the same entropy are isomorphic．
Adv．Math．，4（3）：337－352．
固
Ornstein，D．S．（1970b）．
Factors of Bernoulli shifts are Bernoulli shifts．
Adv．Math．，5（3）：349－364．
Or Ornstein，D．S．and Weiss，B．（1987）．
Entropy and isomorphism theorems for actions of amenable groups．
J．Anal．Math．，48（1）：1－141．
园
Sly，A．and Z．，L．（2019）．
Stationary distributions for the voter model in $d \geq 3$ are bernoulli shifts．
Tein Steif，J．E．and Tykesson，J．（2017）．
Generalized divide and color models．

