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The model: directed LPP with exponential weights
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We study the directed last passage percolation (LPP) on Z2.

ξ(v) ∼ Exp(1), i.i.d. ∀v ∈ Z2

Passage time: Tu,v := maxγ
∑

w∈γ ξ(w)

Geodesic: Γu,v := argmaxγ
∑

w∈γ ξ(w)

Equivalent to TASEP, exactly solvable with 1 : 2 : 3 scaling.
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Exactly solvable in the KPZ universality class.
Some classical results:

T(0,0),(n,n) ∼ 4n (Rost, 1981).

2−4/3n−1/3(T(0,0),(n,n) − 4n) converges weakly to the GUE
Tracy-Widom distribution (Johansson, 2000).
Point to line profile: stationary Airy2 process minus a
parabola (Borodin and Ferrari, 2008)

2−4/3n−1/3
(

T(0,0),(n−x(2n)2/3,n+x(2n)2/3) − 4n
)
⇒ A2(x)− x2

A2 is absolute continuous with respect to Brownian motion
(Corwin and Hammond, 2014).
General initial data: KPZ fixed point (Matetski, Quastel, and
Remenik, 2017).
Joint scaling limit: the directed landscape (Dauvergne,
Ortmann, and Virág, 2018).
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The problem and our results
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We study the local behavior along geodesics.

v

Random environment at v contains:
ξ{v} = {ξ(v + u)}u∈Z2 ∈ RZ2

and Γ(0,0),(n,n) − v ∈ {0,1}Z2
.

Consider the environment for all v ∈ Γ(0,0),(n,n).
Empirical measure:
µn := 1

|Γ(0,0),(n,n)|
∑

v∈Γ(0,0),(n,n)
δ(ξ{v},Γ(0,0),(n,n)−v).
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Main result

Empirical measure
µn := 1

|Γ(0,0),(n,n)|
∑

v∈Γ(0,0),(n,n)
δ(ξ{v},Γ(0,0),(n,n)−v), a random

measure in the space RZ2 × {0,1}Z2
.

Question: limiting behavior of µn as n→∞?

This was first asked for the first passage percolation (FPP) set-
ting (e.g. Hoffman, AimPL, 2015).

In a different direction, (Bates, 2020) proved convergence of the
empirical measure of weights 1

|Γ(0,0),(n,n)|
∑

e∈Γ(0,0),(n,n)
δξ(e), for cer-

tain families of i.i.d. edge weights, using a variational formula.
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Main result

Empirical measure
µn := 1

|Γ(0,0),(n,n)|
∑

v∈Γ(0,0),(n,n)
δ(ξ{v},Γ(0,0),(n,n)−v).

Question: limiting behavior of µn as n→∞?

A related question: convergence of the environment at a single point?
Also consider Γ(0,0) = {Γ(0,0)[i]}∞i=1, the semi-infinite
geodesic in the (1,1) direction; let
µr := 1

r
∑r

i=1 δ(ξ{Γ(0,0)[i]},Γ(0,0)−Γ(0,0)[i]).

Theorem (Sly and Z., unpublished)

There is a (deterministic) measure ν, such that
1 µn → ν in probability.
2 The law of ξ{v}, Γ(0,0),(n,n) − v converges to ν, where v is

the midpoint of Γ(0,0),(n,n).
3 µr → ν almost surely.
4 The law of ξ{Γ(0,0)[i]}, Γ(0,0) − Γ(0,0)[i] converges to ν.

Next Question: what is the limiting measure ν?
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Next Question: what is the limiting measure ν?

Theorem (Martin, Sly, and Z., 2021)

We give an explicit description of the limiting measure ν.

Semi-infinite geodesic⇔ Competition interface from stationary
⇔ TASEP with a second class particle

Similar results hold for geodesics in other directions.
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Some applications

This explicit construction enables one to explicitly compute the law ν,
thus all local statistics of the geodesic.

Some examples:

Law of the weight of a vertex on the geodesic: for ξ, Γ ∼ ν

1
2n
|{v ∈ Γ(0,0),(n,n) : ξ(v) > x}|

→P[ξ((0,0)) > x ] = (1 +
3x
4

+
x2

8
)e−x .

(Note that before we know Eξ((0,0)) = 2, since ET(0,0),(n,n) ∼ 4n.)

Portion of ‘turnings’ along the geodesic:

Let Nn be the number of v ∈ Z2, such that
{v , v − (1,0), v + (0,1)} ⊂ Γ(0,0),(n,n), or
{v , v + (1,0), v − (0,1)} ⊂ Γ(0,0),(n,n).

Then Nn
2n →

3
8 in probability.
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The limiting measure

Semi-infinite geodesic⇔ Competition interface from stationary

(0, 0)
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Busemann function G(v) = limn→∞ T(0,0),(n,n) − Tv ,(n,n).
⇒ ξ(v) = G(v + (1,0)) ∧G(v + (0,1))−G(v).
Boundary of I = {v : G(v) ≤ 0} is a (two-sided) simple random
walk. Define ξ∨(v) = G(v)−G(v − (1,0)) ∨G(v − (0,1)).
Given I, {ξ∨(v)}v 6∈I are i.i.d. Exp(1). (Seppäläinen, etc.)
Let the aggregate at time t be {v : G(v) ≤ t}. Then ξ∨(v) is the
waiting time at v , and Z = Γ(0,0) + ( 1
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The limiting measure

Semi-infinite geodesic⇔ Competition interface from stationary

(0, 0)

Γ(0,0)

Z

The other direction: first take the two species corner growth process,
where the initial boundary is given by a (two-sided) simple random
walk.

Let G(v) be the time when v is occupied.
Let Γ(0,0) = Z − ( 1

2 ,
1
2 ), and

ξ(v) = G(v + (1,0)) ∧G(v + (0,1))−G(v).

Now suffices to study local environment around the competition
interface.
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The limiting measure

Competition interface⇔ TASEP with a second class particle

TASEP and growing surface:
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2 ).

Re-center around the hole-particle pair: TASEP as seen from a sec-
ond class particle, and its stationary distribution gives ν.
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The limiting measure

Stationary measure of TASEP as seen from a second class par-
ticle:

A stationary measure for TASEP with infinitely many second
class particles: a renewal process.
Identify 2CP to the right with particles, and 2CP to the left
with holes. (Ferrari, Fontes, and Kohayakawa, 1994)

An alternative description: the corresponding surface is the lower
one of two non-intersecting random walks.
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The limiting measure

Now we construct ν.

Take the stationary measure (of TASEP as seen from a second
class particle):

−7−6 4 −5 3 2 −4−3 1 −2−1 0 0 −1−2−3 1 −4−5 2 3 −6 4 5

2CP⇒ a hole-particle pair, label all particles and holes.
Let G((a,b)) be the time when the particle labeled b is
switched with the hole labeled a; let
ξ(v) = G(v + (1,0)) ∧G(v + (0,1))−G(v).
Let Γ consist of all (a,b), which are the labels for the
hole-particle pair at some time.
ν is given by ξ, Γ, reweighted by ξ((0,0))−1.
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Ingredients of the proof
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General structure of arguments

Main steps:

1 Convergence of TASEP as seen from a second class
particle:
Initial i.i.d. Bernoulli corresponds to a semi-infinite
geodesic. Converge to the stationary measure.

2 Convergence of empirical distribution: ergodicity of the
stationary process.

3 From semi-infinite geodesic to finite geodesics.

4 A uniform convergence in a rectangle:
Convergence of the law;
Upgrade in probability convergence to almost surely
convergence.
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Convergence of TASEP

Consider two TASEP as seen from a second class particle:
1 Ψ: the stationary one;
2 Φt : start with i.i.d. Bernoulli( 1

2 ), and run for time t .

Show that (an average of) Φt is similar to Ψ: a coupling.
Observation: consider TASEP with infinitely many 2CP, under
stationary:
Left to holes, right to particles⇒ the stationary measure Ψ.
Left to particles, right to holes⇒ i.i.d. Bernoulli( 1

2 ), i.e. Φ0.
Initially, label all 2CP with Z, from right to left.

−3−2−1012

Rule: larger labels are stronger. Run for time t .
0 3 4 −1−42

Left to holes, right to particles⇒ the stationary measure Ψ.
Negative to holes, positive to particles⇒ Φt .

0 3 4 −1−42

W.h.p., left are negative and right are positive.
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Rectangle uniform convergence

n2/3

n

For geodesics whose endpoints vary in segments of length n2/3, we
prove that convergence of the empirical distribution is uniform.

Idea: take a dense finite (independent of n) family of geodesics,
s.t. all geodesics are covered w.h.p.

Usage: uniform convergence implies that the empirical distribution in
part of the geodesic is also close to ν.

1 Convergence of law:
Also need: the laws for vertices (in the geodesic) at distances
o(n) are close.

2 Exponential convergence speed: divide the geodesic into
independent segments, each apply the uniform convergence.
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Thank you!
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