The Environment Seen from Geodesics in Exponential Last Passage Percolation

Lingfu Zhang (Joint work with James Martin and Allan Sly)

Princeton University Department of Mathematics

Apr 21, 2021 Berkeley Probability Seminar

Lingfu Zhang

The model: directed LPP with exponential weights

Lingfu Zhang

Princeton

We study the directed last passage percolation (LPP) on \mathbb{Z}^2 .

■
$$\xi(v) \sim \text{Exp}(1)$$
, i.i.d. $\forall v \in \mathbb{Z}^2$
■ Passage time: $T_{u,v} := \max_{\gamma} \sum_{w \in \gamma} \xi(w)$
■ Geodesic: $\Gamma_{u,v} := \operatorname{argmax}_{\gamma} \sum_{w \in \gamma} \xi(w)$

We study the directed last passage percolation (LPP) on \mathbb{Z}^2 .

■
$$\xi(v) \sim \text{Exp}(1)$$
, i.i.d. $\forall v \in \mathbb{Z}^2$
■ Passage time: $T_{u,v} := \max_{\gamma} \sum_{w \in \gamma} \xi(w)$
■ Geodesic: $\Gamma_{u,v} := \operatorname{argmax}_{\gamma} \sum_{w \in \gamma} \xi(w)$

Equivalent to TASEP, exactly solvable with 1 : 2 : 3 scaling.

T_{(0,0),(n,n)} ~ 4n (Rost, 1981).

- *T*_{(0,0),(*n*,*n*)} ~ 4*n* (Rost, 1981).
- $2^{-4/3}n^{-1/3}(T_{(0,0),(n,n)} 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).

- *T*_{(0,0),(*n*,*n*)} ~ 4*n* (Rost, 1981).
- $2^{-4/3}n^{-1/3}(T_{(0,0),(n,n)} 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).
- Point to line profile: stationary Airy₂ process minus a parabola (Borodin and Ferrari, 2008)

$$2^{-4/3}n^{-1/3}\left(T_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})}-4n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}$$

- *T*_{(0,0),(*n*,*n*)} ~ 4*n* (Rost, 1981).
- $2^{-4/3}n^{-1/3}(T_{(0,0),(n,n)} 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).
- Point to line profile: stationary Airy₂ process minus a parabola (Borodin and Ferrari, 2008)

$$2^{-4/3}n^{-1/3}\left(T_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})}-4n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}$$

 \mathcal{A}_2 is absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014).

- *T*_{(0,0),(*n*,*n*)} ~ 4*n* (Rost, 1981).
- $2^{-4/3}n^{-1/3}(T_{(0,0),(n,n)} 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).
- Point to line profile: stationary Airy₂ process minus a parabola (Borodin and Ferrari, 2008)

$$2^{-4/3}n^{-1/3}\left(T_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})}-4n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}$$

 \mathcal{A}_2 is absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014).

 General initial data: KPZ fixed point (Matetski, Quastel, and Remenik, 2017).
 Joint scaling limit: the directed landscape (Dauvergne, Ortmann, and Virág, 2018).

The problem and our results

Lingfu Zhang

Princeton

Lingfu Zhang

Princeton

Question: limiting behavior of μ_n as $n \to \infty$?

Question: limiting behavior of μ_n as $n \to \infty$?

This was first asked for the first passage percolation (FPP) setting (e.g. Hoffman, AimPL, 2015).

Question: limiting behavior of μ_n as $n \to \infty$?

This was first asked for the first passage percolation (FPP) setting (e.g. Hoffman, AimPL, 2015).

In a different direction, (Bates, 2020) proved convergence of the empirical measure of weights $\frac{1}{|\Gamma_{(0,0),(n,n)}|} \sum_{e \in \Gamma_{(0,0),(n,n)}} \delta_{\xi(e)}$, for certain families of i.i.d. edge weights, using a variational formula.

Main result

Empirical measure $\mu_n := \frac{1}{|\Gamma_{(0,0),(n,n)}|} \sum_{v \in \Gamma_{(0,0),(n,n)}} \delta_{(\xi\{v\},\Gamma_{(0,0),(n,n)}-v)}.$ Question: limiting behavior of μ_n as $n \to \infty$?

Empirical measure $\mu_n := \frac{1}{|\Gamma_{(0,0),(n,n)}|} \sum_{v \in \Gamma_{(0,0),(n,n)}} \delta_{(\xi\{v\},\Gamma_{(0,0),(n,n)}-v)}.$ Question: limiting behavior of μ_n as $n \to \infty$?

A related question: convergence of the environment at a single point?

■ Empirical measure $\mu_n := \frac{1}{|\Gamma_{(0,0),(n,n)}|} \sum_{\nu \in \Gamma_{(0,0),(n,n)}} \delta_{(\xi\{\nu\},\Gamma_{(0,0),(n,n)}-\nu)}.$ Question: limiting behavior of μ_n as $n \to \infty$? A related question: convergence of the environment at a single point? ■ Also consider $\Gamma_{(0,0)} = \{\Gamma_{(0,0)}[i]\}_{i=1}^{\infty}$, the semi-infinite geodesic in the (1, 1) direction; let $\overline{\mu}_r := \frac{1}{r} \sum_{i=1}^r \delta_{(\xi\{\Gamma_{(0,0)}[i]\},\Gamma_{(0,0)}-\Gamma_{(0,0)}[i])}.$

■ Empirical measure $\mu_n := \frac{1}{|\Gamma_{(0,0),(n,n)}|} \sum_{\nu \in \Gamma_{(0,0),(n,n)}} \delta_{(\xi\{\nu\},\Gamma_{(0,0),(n,n)}-\nu)}.$ Question: limiting behavior of μ_n as $n \to \infty$? A related question: convergence of the environment at a single point? ■ Also consider $\Gamma_{(0,0)} = \{\Gamma_{(0,0)}[i]\}_{i=1}^{\infty}$, the semi-infinite geodesic in the (1, 1) direction; let $\overline{\mu}_r := \frac{1}{r} \sum_{i=1}^r \delta_{(\xi\{\Gamma_{(0,0)}[i]\},\Gamma_{(0,0)}-\Gamma_{(0,0)}[i])}.$

Theorem (Sly and Z., unpublished)

There is a (deterministic) measure ν , such that

- $\mu_n \rightarrow \nu$ in probability.
- **2** The law of ξ {v}, Γ _{(0,0),(n,n)} v converges to ν , where v is the midpoint of Γ _{(0,0),(n,n)}.
- $\ \ \, \ \, \overline{\mu}_{r}
 ightarrow
 u$ almost surely.
- **The law of** $\{ \Gamma_{(0,0)}[i] \}, \Gamma_{(0,0)} \Gamma_{(0,0)}[i] \text{ converges to } \nu.$

■ Empirical measure $\mu_n := \frac{1}{|\Gamma_{(0,0),(n,n)}|} \sum_{\nu \in \Gamma_{(0,0),(n,n)}} \delta_{(\xi\{\nu\},\Gamma_{(0,0),(n,n)}-\nu)}.$ Question: limiting behavior of μ_n as $n \to \infty$? A related question: convergence of the environment at a single point? ■ Also consider $\Gamma_{(0,0)} = \{\Gamma_{(0,0)}[i]\}_{i=1}^{\infty}$, the semi-infinite geodesic in the (1, 1) direction; let $\overline{\mu}_r := \frac{1}{r} \sum_{i=1}^r \delta_{(\xi\{\Gamma_{(0,0)}[i]\},\Gamma_{(0,0)}-\Gamma_{(0,0)}[i])}.$

Theorem (Sly and Z., unpublished)

There is a (deterministic) measure ν , such that

- $\mu_n \rightarrow \nu$ in probability.
- **2** The law of ξ {v}, Γ _{(0,0),(*n*,*n*)} v converges to ν , where v is the midpoint of Γ _{(0,0),(*n*,*n*)}.
- $\ \ \, \ \, \overline{\mu}_{r}
 ightarrow
 u$ almost surely.
- The law of $\xi\{\Gamma_{(0,0)}[i]\}, \Gamma_{(0,0)} \Gamma_{(0,0)}[i]$ converges to ν .

Next Question: what is the limiting measure ν ?

Lingfu Zhang

Theorem (Sly and Z., unpublished)

There is a (deterministic) measure ν , such that

1 $\mu_n \rightarrow \nu$ in probability.

- **2** The law of ξ {v}, Γ _{(0,0),(n,n)} v converges to ν , where v is the midpoint of Γ _{(0,0),(n,n)}.
- $\overline{\mu}_r \rightarrow \nu$ almost surely.
- **The law of** $\xi\{\Gamma_{(0,0)}[i]\}, \Gamma_{(0,0)} \Gamma_{(0,0)}[i]$ converges to ν .

Next Question: what is the limiting measure ν ?

Theorem (Martin, Sly, and Z., 2021)

We give an explicit description of the limiting measure ν .

Theorem (Sly and Z., unpublished)

There is a (deterministic) measure ν , such that

1 $\mu_n \rightarrow \nu$ in probability.

- **2** The law of ξ {v}, Γ _{(0,0),(n,n)} v converges to ν , where v is the midpoint of Γ _{(0,0),(n,n)}.
- **B** $\overline{\mu}_r \rightarrow \nu$ almost surely.
- **The law of** $\xi\{\Gamma_{(0,0)}[i]\}, \Gamma_{(0,0)} \Gamma_{(0,0)}[i]$ converges to ν .

Next Question: what is the limiting measure ν ?

Theorem (Martin, Sly, and Z., 2021)

We give an explicit description of the limiting measure ν .

Theorem (Sly and Z., unpublished)

There is a (deterministic) measure ν , such that

1 $\mu_n \rightarrow \nu$ in probability.

- **2** The law of ξ {v}, Γ _{(0,0),(n,n)} v converges to ν , where v is the midpoint of Γ _{(0,0),(n,n)}.
- $\overline{\mu}_r \rightarrow \nu$ almost surely.
- **The law of** $\xi\{\Gamma_{(0,0)}[i]\}, \Gamma_{(0,0)} \Gamma_{(0,0)}[i]$ converges to ν .

Next Question: what is the limiting measure ν ?

Theorem (Martin, Sly, and Z., 2021)

We give an explicit description of the limiting measure ν .

Similar results hold for geodesics in other directions.

Lingfu Zhang

Princeton

Some examples:

Some examples:

Law of the weight of a vertex on the geodesic: for $\overline{\xi}, \overline{\Gamma} \sim \nu$

$$\frac{1}{2n} |\{v \in \Gamma_{(0,0),(n,n)} : \xi(v) > x\}|$$

$$\rightarrow P[\overline{\xi}((0,0)) > x] = (1 + \frac{3x}{4} + \frac{x^2}{8})e^{-x}.$$

(Note that before we know $\mathbb{E}\overline{\xi}((0,0)) = 2$, since $\mathbb{E}\mathcal{T}_{(0,0),(n,n)} \sim 4n$.)

Princeton

Some examples:

Law of the weight of a vertex on the geodesic: for $\overline{\xi}, \overline{\Gamma} \sim \nu$

$$\frac{1}{2n} |\{v \in \Gamma_{(0,0),(n,n)} : \xi(v) > x\}|$$

$$\rightarrow P[\overline{\xi}((0,0)) > x] = (1 + \frac{3x}{4} + \frac{x^2}{8})e^{-x}.$$

(Note that before we know $\mathbb{E}\overline{\xi}((0,0)) = 2$, since $\mathbb{E}T_{(0,0),(n,n)} \sim 4n$.)

Portion of 'turnings' along the geodesic:

Let N_n be the number of $v \in \mathbb{Z}^2$, such that $\{v, v - (1, 0), v + (0, 1)\} \subset \Gamma_{(0,0),(n,n)}$, or $\{v, v + (1, 0), v - (0, 1)\} \subset \Gamma_{(0,0),(n,n)}$.

Then $\frac{N_n}{2n} \rightarrow \frac{3}{8}$ in probability.

The limiting measure

Semi-infinite geodesic \Leftrightarrow Competition interface from stationary

Lingfu Zhang

The limiting measure

Semi-infinite geodesic \Leftrightarrow Competition interface from stationary

Semi-infinite geodesic \Leftrightarrow Competition interface from stationary

Busemann function $G(v) = \lim_{n \to \infty} T_{(0,0),(n,n)} - T_{v,(n,n)}$.

Semi-infinite geodesic \Leftrightarrow Competition interface from stationary

■ Busemann function $G(v) = \lim_{n\to\infty} T_{(0,0),(n,n)} - T_{v,(n,n)}$. $\Rightarrow \xi(v) = G(v + (1,0)) \land G(v + (0,1)) - G(v).$

- Busemann function $G(v) = \lim_{n \to \infty} T_{(0,0),(n,n)} T_{v,(n,n)}$. ⇒ $\xi(v) = G(v + (1,0)) \land G(v + (0,1)) - G(v)$.
- Boundary of $I = \{v : G(v) \le 0\}$ is a (two-sided) simple random walk. Define $\xi^{\vee}(v) = G(v) G(v (1, 0)) \vee G(v (0, 1))$. Given I, $\{\xi^{\vee}(v)\}_{v \notin I}$ are i.i.d. Exp(1). (Seppäläinen, etc.)

- Busemann function $G(v) = \lim_{n \to \infty} T_{(0,0),(n,n)} T_{v,(n,n)}$. ⇒ $\xi(v) = G(v + (1,0)) \land G(v + (0,1)) - G(v)$.
- Boundary of $I = \{v : G(v) \le 0\}$ is a (two-sided) simple random walk. Define $\xi^{\vee}(v) = G(v) G(v (1, 0)) \vee G(v (0, 1))$. Given I, $\{\xi^{\vee}(v)\}_{v \notin I}$ are i.i.d. Exp(1). (Seppäläinen, etc.)
- Let the aggregate at time *t* be $\{v : G(v) \le t\}$. Then $\xi^{\vee}(v)$ is the waiting time at *v*, and $Z = \Gamma_{(0,0)} + (\frac{1}{2}, \frac{1}{2})$.

Semi-infinite geodesic \Leftrightarrow Competition interface from stationary

The other direction: first take the two species corner growth process, where the initial boundary is given by a (two-sided) simple random walk.

Let G(v) be the time when v is occupied.

Let
$$\Gamma_{(0,0)} = Z - (\frac{1}{2}, \frac{1}{2})$$
, and
 $\xi(v) = G(v + (1,0)) \wedge G(v + (0,1)) - G(v)$.

Semi-infinite geodesic \Leftrightarrow Competition interface from stationary

The other direction: first take the two species corner growth process, where the initial boundary is given by a (two-sided) simple random walk.

Let G(v) be the time when v is occupied.

Let
$$\Gamma_{(0,0)} = Z - (\frac{1}{2}, \frac{1}{2})$$
, and
 $\xi(v) = G(v + (1,0)) \land G(v + (0,1)) - G(v)$

- Now suffices to study local environment around the competition interface.

Competition interface \Leftrightarrow TASEP with a second class particle

Lingfu Zhang

Princeton

Now keep track of a hole-particle pair:

Initially, i.i.d. Bernoulli $(\frac{1}{2})$.

Now keep track of a hole-particle pair:

Initially, i.i.d. Bernoulli($\frac{1}{2}$).

Re-center around the hole-particle pair: TASEP as seen from a second class particle, and its stationary distribution gives ν .

Stationary measure of TASEP as seen from a second class particle:

Stationary measure of TASEP as seen from a second class particle:

- A stationary measure for TASEP with infinitely many second class particles: a renewal process.
- Identify 2CP to the right with particles, and 2CP to the left with holes. (Ferrari, Fontes, and Kohayakawa, 1994)

Stationary measure of TASEP as seen from a second class particle:

- A stationary measure for TASEP with infinitely many second class particles: a renewal process.
- Identify 2CP to the right with particles, and 2CP to the left with holes. (Ferrari, Fontes, and Kohayakawa, 1994)

An alternative description: the corresponding surface is the lower one of two non-intersecting random walks.

Lingfu Zhang

Take the stationary measure (of TASEP as seen from a second class particle):

Take the stationary measure (of TASEP as seen from a second class particle):

 \blacksquare 2CP \Rightarrow a hole-particle pair, label all particles and holes.

Take the stationary measure (of TASEP as seen from a second class particle):

2CP \Rightarrow a hole-particle pair, label all particles and holes.

■ Let $\overline{G}((a, b))$ be the time when the particle labeled *b* is switched with the hole labeled *a*; let $\overline{\xi}(v) = \overline{G}(v + (1, 0)) \land \overline{G}(v + (0, 1)) - \overline{G}(v)$.

Take the stationary measure (of TASEP as seen from a second class particle):

 $-0.0 \bullet 0 \bullet 0 \bullet 0 0 \bullet 0 0 \bullet 0 0 \bullet 0 \bullet 0 0$

 \blacksquare 2CP \Rightarrow a hole-particle pair, label all particles and holes.

- Let $\overline{G}((a, b))$ be the time when the particle labeled *b* is switched with the hole labeled *a*; let $\overline{\xi}(v) = \overline{G}(v + (1, 0)) \land \overline{G}(v + (0, 1)) - \overline{G}(v).$
- Let $\overline{\Gamma}$ consist of all (a, b), which are the labels for the hole-particle pair at some time.

Take the stationary measure (of TASEP as seen from a second class particle):

 $-0.0 \bullet 0 \bullet 0 \bullet 0 0 \bullet 0 0 \bullet 0 0 \bullet 0 \bullet 0 0$

 \blacksquare 2CP \Rightarrow a hole-particle pair, label all particles and holes.

- Let $\overline{G}((a, b))$ be the time when the particle labeled *b* is switched with the hole labeled *a*; let $\overline{\xi}(v) = \overline{G}(v + (1, 0)) \land \overline{G}(v + (0, 1)) - \overline{G}(v).$
- Let \u03c6 consist of all (a, b), which are the labels for the hole-particle pair at some time.

• ν is given by $\overline{\xi}, \overline{\Gamma}$, reweighted by $\overline{\xi}((0,0))^{-1}$.

Ingredients of the proof

Lingfu Zhang

Princeton

General structure of arguments

Main steps:

Lingfu Zhang

 Convergence of TASEP as seen from a second class particle: Initial i.i.d. Bernoulli corresponds to a semi-infinite geodesic. Converge to the stationary measure.

 Convergence of TASEP as seen from a second class particle: Initial i.i.d. Bernoulli corresponds to a semi-infinite geodesic. Converge to the stationary measure.

Convergence of empirical distribution: ergodicity of the stationary process.

- Convergence of TASEP as seen from a second class particle: Initial i.i.d. Bernoulli corresponds to a semi-infinite geodesic. Converge to the stationary measure.
- Convergence of empirical distribution: ergodicity of the stationary process.
- From semi-infinite geodesic to finite geodesics.

- Convergence of TASEP as seen from a second class particle: Initial i.i.d. Bernoulli corresponds to a semi-infinite geodesic. Converge to the stationary measure.
- Convergence of empirical distribution: ergodicity of the stationary process.
- From semi-infinite geodesic to finite geodesics.
- A uniform convergence in a rectangle: Convergence of the law; Upgrade in probability convergence to almost surely convergence.

- Ψ: the stationary one;
- **2** Φ_t : start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*.

Consider two TASEP as seen from a second class particle: Ψ : the stationary one;

 Φ_t : start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*. Show that (an average of) Φ_t is similar to Ψ : a coupling.

• Ψ : the stationary one;

 $\square \Phi_t$: start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*.

Show that (an average of) Φ_t is similar to Ψ : a coupling.

Observation: consider TASEP with infinitely many 2CP, under stationary:

Left to holes, right to particles \Rightarrow the stationary measure Ψ .

Left to particles, right to holes \Rightarrow i.i.d. Bernoulli $(\frac{1}{2})$, i.e. Φ_0 .

- Ψ: the stationary one;
- $\square \Phi_t$: start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*.
- Show that (an average of) Φ_t is similar to Ψ : a coupling.
 - Observation: consider TASEP with infinitely many 2CP, under stationary:

Left to holes, right to particles \Rightarrow the stationary measure Ψ .

Left to particles, right to holes \Rightarrow i.i.d. Bernoulli $(\frac{1}{2})$, i.e. Φ_0 .

Initially, label all 2CP with \mathbb{Z} , from right to left.

- Ψ: the stationary one;
- **2** Φ_t : start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*.

Show that (an average of) Φ_t is similar to Ψ : a coupling.

Observation: consider TASEP with infinitely many 2CP, under stationary:

Left to holes, right to particles \Rightarrow the stationary measure Ψ .

Left to particles, right to holes \Rightarrow i.i.d. Bernoulli($\frac{1}{2}$), i.e. Φ_0 .

■ Initially, label all 2CP with Z, from right to left.

Rule: larger labels are stronger. Run for time t.

- Ψ : the stationary one;
- $\square \Phi_t$: start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*.
- Show that (an average of) Φ_t is similar to Ψ : a coupling.
 - Observation: consider TASEP with infinitely many 2CP, under stationary:

Left to holes, right to particles \Rightarrow the stationary measure Ψ .

Left to particles, right to holes \Rightarrow i.i.d. Bernoulli($\frac{1}{2}$), i.e. Φ_0 .

■ Initially, label all 2CP with Z, from right to left.

Rule: larger labels are stronger. Run for time *t*.

• Left to holes, right to particles \Rightarrow the stationary measure Ψ . Negative to holes, positive to particles $\Rightarrow \Phi_t$.

- Ψ : the stationary one;
- **2** Φ_t : start with i.i.d. Bernoulli $(\frac{1}{2})$, and run for time *t*.

Show that (an average of) Φ_t is similar to Ψ : a coupling.

Observation: consider TASEP with infinitely many 2CP, under stationary:

Left to holes, right to particles \Rightarrow the stationary measure Ψ .

Left to particles, right to holes \Rightarrow i.i.d. Bernoulli $(\frac{1}{2})$, i.e. Φ_0 .

■ Initially, label all 2CP with Z, from right to left.

Rule: larger labels are stronger. Run for time *t*.

$$-\overset{2}{\circ} \overset{-4}{\circ} \overset{0}{\circ} \overset{3}{\circ} \overset{4}{\circ} \overset{-1}{\circ} \overset{-1$$

• Left to holes, right to particles \Rightarrow the stationary measure Ψ . Negative to holes, positive to particles $\Rightarrow \Phi_t$.

■ W.h.p., left are negative and right are positive.

For geodesics whose endpoints vary in segments of length $n^{2/3}$, we prove that convergence of the empirical distribution is uniform.

For geodesics whose endpoints vary in segments of length $n^{2/3}$, we prove that convergence of the empirical distribution is uniform.

Idea: take a dense finite (independent of *n*) family of geodesics, s.t. all geodesics are covered w.h.p.

For geodesics whose endpoints vary in segments of length $n^{2/3}$, we prove that convergence of the empirical distribution is uniform.

- Idea: take a dense finite (independent of *n*) family of geodesics,
 - s.t. all geodesics are covered w.h.p.

Usage: uniform convergence implies that the empirical distribution in part of the geodesic is also close to ν .

For geodesics whose endpoints vary in segments of length $n^{2/3}$, we prove that convergence of the empirical distribution is uniform.

- Idea: take a dense finite (independent of *n*) family of geodesics,
 - s.t. all geodesics are covered w.h.p.

Usage: uniform convergence implies that the empirical distribution in part of the geodesic is also close to $\nu.$

Convergence of law:

Also need: the laws for vertices (in the geodesic) at distances o(n) are close.

For geodesics whose endpoints vary in segments of length $n^{2/3}$, we prove that convergence of the empirical distribution is uniform.

- Idea: take a dense finite (independent of *n*) family of geodesics,
 - s.t. all geodesics are covered w.h.p.

Usage: uniform convergence implies that the empirical distribution in part of the geodesic is also close to $\nu.$

Convergence of law:

Also need: the laws for vertices (in the geodesic) at distances o(n) are close.

Exponential convergence speed: divide the geodesic into independent segments, each apply the uniform convergence.

Thank you!

Lingfu Zhang

Princeton

AimPL. (2015). First passage percolation. [available at http://aimpl.org/firstpercolation].

- Bates, E. (2020). Empirical distributions, geodesic lengths, and a variational formula in first-passage percolation [arXiv preprint arXiv:2006.12580].
- Borodin, A., & Ferrari, P. (2008). Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab., 13, 1380–1418.
- Corwin, I., & Hammond, A. (2014). Brownian Gibbs property for Airy line ensembles. Invent. Math., 195(2), 441–508.
 - Dauvergne, D., Ortmann, J., & Virág, B. (2018). The directed landscape [arXiv preprint arXiv:1812.00309].
 - Ferrari, P., Fontes, L., & Kohayakawa, Y. (1994). Invariant measures for a two-species asymmetric process. J. Stat. Phys., 76(5-6), 1153–1177.

Johansson, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys., 209(2), 437–476.

Martin, J., Sly, A., & Z., L. (2021). Convergence of the environment seen from geodesics in exponential last passage percolation.

- Matetski, K., Quastel, J., & Remenik, D. (2017). The KPZ fixed point [arXiv preprint arXiv:1701.00018].
- Rost, H. (1981). Non-equilibrium behaviour of a many particle process: Density profile and local equilibria. Zeitschrift f. Warsch. Verw. Gebiete, 58(1), 41–53.

