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The model of TASEP
Totally Asymmetric Simple Exclusion Process (TASEP)

1 2 3 4 5 6 7-6 -5 -4 -3 -2 -1 0

Step initial: particles at non-positive sites
Each edge rings according to a Poisson clock with rate 1



The model of TASEP
Totally Asymmetric Simple Exclusion Process (TASEP)

1 2 3 4 5 6 7-6 -5 -4 -3 -2 -1 0

Step initial: particles at non-positive sites
Each edge rings according to a Poisson clock with rate 1
Blocked if already occupied by another particle



Growth Surface representation



Growth Surface representation

Surface is in the Kardar-Parisi-Zhang (KPZ) universality class
Step initial: growth from a corner



Last Passage Percolation



Last Passage Percolation
With growth surface: 

𝑇𝑇 0,0 ,(𝑖𝑖,𝑗𝑗)

= time when surface reaches (𝑖𝑖, 𝑗𝑗)
= time when the particle from −𝑖𝑖 makes 
the (𝑗𝑗 + 1)-th jump



Last Passage Percolation
𝑇𝑇 0,0 ,(𝑛𝑛,𝑛𝑛): time when the particle 
from −𝑛𝑛 jumps out of 0

Max stationary current of  1
4

𝑛𝑛2/3

Geometry:
(Johansson, 2000) Transversal 
fluctuation is of order 𝑛𝑛2/3



Last Passage Percolation
𝑇𝑇 0,0 ,(𝑛𝑛,𝑛𝑛): time when the particle 
from −𝑛𝑛 jumps out of 0

Max stationary current of  1
4

𝑛𝑛2/3

Geometry:
(Johansson, 2000) Transversal 
fluctuation is of order 𝑛𝑛2/3



Last Passage Percolation
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Local defects



Single slow bond in TASEP
1 2 3 4 5 6 7-6 -5 -4 -3 -2 -1 0

Poisson clocks:

• rate 1 − 𝜖𝜖 for the edge between 0 and 1;

• rate 1 elsewhere

In LPP: 

Exp(1 − 𝜖𝜖) along diagonal, Exp(1) elsewhere
Note Exp 1 − 𝜖𝜖 = Exp 1 + Bernoulli(𝜖𝜖)Exp(1 − 𝜖𝜖)



Single slow bond in TASEP
𝐿𝐿𝑛𝑛𝜖𝜖 = 𝑇𝑇 0,0 ,(𝑛𝑛,𝑛𝑛)

𝜖𝜖 : time when the particle from −𝑛𝑛 moves out of 0

Then C 𝜖𝜖 = lim
𝑛𝑛→∞

𝑛𝑛
𝐿𝐿𝑛𝑛𝜖𝜖

is the maximum stationary current (across 0)

Question (back to Janowsky and Lebowitz, 1992): 

is there a macroscopic slow down?

i.e., is C 𝜖𝜖 < 1
4

for any 𝜖𝜖 > 0?

Two reasons for it being difficult:
1) Hard to simulate
2) Perturbation destroies exact-solvable structures



Simulations and predictions
Disagreement among physicists 

Janowsky and Lebowitz, 1994: C 𝜖𝜖 < 1
4

for any 𝜖𝜖 > 0, by heuristics

Ha, Timonem, den Nijs, 2003: simulations

C 𝜖𝜖 = 1
4

for 𝜖𝜖 < 0.2 (roughly)

= 1 − 𝜖𝜖

C(𝜖𝜖) = (1 − Δ𝑏𝑏2)/4



Rigorous bounds
Janowsky and Lebowitz, 1994: C 𝜖𝜖 < 1

4
for any 𝜖𝜖 < 0.49

Seppäläinen, 2001: 1−𝜖𝜖
4−𝜖𝜖

≤ C 𝜖𝜖 ≤ min{1
4

, 2(1−𝜖𝜖)(2−𝜖𝜖)
1−𝜖𝜖 2+2(2−𝜖𝜖)

}

A closely related problem:

Baik and Rains, 2001: 

longest increasing subsequence with involution with fixed points

Non-trivial transition



Baik-Rains model
They consider random involution; 

in the LPP setting, this means a symmetric environment
𝜉𝜉 𝑖𝑖, 𝑗𝑗 = 𝜉𝜉 𝑗𝑗, 𝑖𝑖 ∼ Exp 1

𝜉𝜉 𝑖𝑖, 𝑖𝑖 ∼ Exp 𝜆𝜆
Then by symmetry, the optimal path can be taken in a half space

With other things, Baik and Rains, 2001 showed that

when 𝜆𝜆 ≥ 1
2
, current is still 1

4

when 𝜆𝜆 < 1
2
, current is < 1

4

Using algebraic formulas



Slow bond problem results
Theorem (Basu, Sidoravicius, and Sly, 2014)
C 𝜖𝜖 < 1

4
for any 𝜖𝜖 > 0. And 𝐿𝐿𝑛𝑛𝜖𝜖 has 𝑛𝑛1/2 times Gaussian fluctuation. 

Geodesic now has 𝑂𝑂(1) typical and log(𝑛𝑛) maximum transversal fluctuation 

Theorem (Sarkar, Sly, and Z., 2021)
For any 𝑘𝑘 > 0, 1

4
− C 𝜖𝜖 < 𝜖𝜖𝑘𝑘 for any 𝜖𝜖 > 0 small enough.

 Janowsky and Lebowitz, 1994 made the correct prediction; 
numerical stimulations are inaccurate

 Why?



Ideas for C 𝜖𝜖 < 1
4

Superadditivity: 𝑇𝑇 0,0 ,(𝑚𝑚,𝑚𝑚) + 𝑇𝑇 𝑚𝑚+1,𝑚𝑚+1 ,(𝑛𝑛,𝑛𝑛) < 𝑇𝑇 1,1 ,(𝑛𝑛,𝑛𝑛)
 Therefore, suffices to show that, for given 𝜖𝜖 > 0,

there exists 𝑛𝑛 such that 𝔼𝔼𝐿𝐿𝑛𝑛𝜖𝜖 = 𝔼𝔼𝑇𝑇 0,0 ,(𝑛𝑛,𝑛𝑛)
𝜖𝜖 > 4𝑛𝑛

Recall that 𝐿𝐿𝑛𝑛 = 4𝑛𝑛 + 𝑛𝑛1/3𝑋𝑋, where 𝑋𝑋 ∼ GUE Tracy-Widom,
and it is known that 𝔼𝔼𝑋𝑋 < 0

It then suffices to gain 𝐶𝐶𝑛𝑛1/3 in expectation for some large 𝐶𝐶



Ideas for C 𝜖𝜖 < 1
4

Need to gain 𝐶𝐶𝑛𝑛1/3 in expectation

As fluctuation is 𝑛𝑛2/3, should spend 𝑛𝑛1/3

time on diagonal. Then already gain ∼ 𝜖𝜖𝑛𝑛1/3
𝑛𝑛2/3

Couple together using
Exp 1 − 𝜖𝜖 = Exp 1 + Bernoulli(𝜖𝜖)Exp(1 − 𝜖𝜖)

Increase the time on diagonal by taking local 
deviations, in a multi-scale way



Bound 1
4
− C 𝜖𝜖

Main task: upper bound the time Γ𝑛𝑛𝜖𝜖 (the 
geodesic in the reinforced environment) 
spends in the diagonal

For the original geodesic, it spends 𝑛𝑛1/3 time 
on diagonal:

coalescence + translation invariant

 Then the geodesic spends roughly the same 
amount of time on each diagonal



Why coalescence
Geodesics either coalescence 
or stay disjoint; cannot be like:

An argument from Basu, Hoffman, Sly, 2018:
if geodesics (with nearby endpoints) are likely to 
stay disjoint, then will have:

and this can be ruled out, using negative 
expectation of GUE Tracy-Widom 𝑛𝑛2/3

𝑛𝑛



Bound 1
4
− C 𝜖𝜖

Main task: upper bound the time Γ𝑛𝑛𝜖𝜖 (the geodesic in 
the reinforced environment) spends in the diagonal

For Γ𝑛𝑛𝜖𝜖, if it is a ‘near’ geodesic (i.e., path with weights close to optimal), then can still 
bound its time on diagonal, as ‘highway picture still holds’

 Key difference 1: in proving coalescence, ‘near’ geodesics may cross each other twice
 rank ‘near’ geodesics by total weights; same rank ones do not cross twice

 Key difference 2: multiple ‘near’ geodesics between same endpoints
 Bound ‘multiple peak event’



Bound 1
4
− C 𝜖𝜖

Two statements:
o If Γ𝑛𝑛𝜖𝜖 is a ‘near’ geodesic, then can bound its time 

on the diagonal
o If Γ𝑛𝑛𝜖𝜖 does not spend much time on the diagonal, 

then it is a ‘near’ geodesic

Induction in scales
For 1

4
− C 𝜖𝜖 < 𝜖𝜖𝑘𝑘 , the number of scales depend on 𝑘𝑘.



A further question

Our arguments can be refined to obtain 1
4
− C 𝜖𝜖 < exp − log 𝜖𝜖−1 𝑎𝑎

for some 𝑎𝑎 > 1

What is the actual order (as 𝜖𝜖 → 0)?

Costin, Lebowitz, Speer, Troiani, 2013 suggests 1
4
− C 𝜖𝜖 ∼ exp −𝑐𝑐𝜖𝜖−1



Thank you!
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