
MA/ACM/IDS 140C: PROBABILITY (SPRING 2025)

PROBLEM SET 1

The difficulty of the problems may vary, so try to solve as many as you can. Most of the tech-
niques have been covered in lectures, but not all. You are encouraged to consult the list of reference
materials on the course website, as well as any other relevant textbooks. However, you should not
use AI chatbots such as ChatGPT. Discussion with others is allowed, but you must not share
intermediate work or final solutions. Feel free to come see me if you’d like to discuss any of the
problems or get some hints.

(Due: by the end of May 18)

Problem 1: Degree sequence. For the Erdős–Rényi graph G
(
n, d

n

)
with fixed d > 0, show that

as n → ∞, the empirical distribution of the degrees converges to Poisson(d) in probability.
In other words, show that for any k ∈ N,

1

n
#{v : deg(v) = k} → dk

k!
e−d,

in probability as n → ∞.

Problem 2: Large deviation of coupon collector. Let X1, X2, ... be i.i.d. uniformly random
from {1, . . . , n}; and let Tn be the smallest time t such that each i ∈ {1, . . . , n} has appeared in
X1, . . . , Xt. We have seen that Tn

n log(n) → 1 in probability, and our question is to figure out how

unlikely that Tn is atypically small.
Namely, find

lim
n→∞

1

n
log(P[Tn < 2n]).

Problem 3: Clique number. Fix 0 < a ≤ 1. For the Erdős–Rényi graph G (n, n−a), let Cn be
its clique number, i.e., the largest integer k such that G (n, n−a) contains a complete graph of order
k. Find the limit limn→∞Cn.
Hint: The limit may be deterministic or random, depending on a. You may find FKG or Janson’s
inequality (Roch, Theorem 4.2.36) useful.

Problem 4: Summation of heavy tail. Let µ be a probability distribution on R with EµX = 0,
and that its density satisfies xa 1

dxµ([x, x+ dx]) → 1 as x → ∞, for some a > 3. Let X1, . . . , Xn be
i.i.d. ∼ µ. Denote by An and Bn be the largest and second largest numbers in X1, . . . , Xn. Show
that for any ϵ > 0, as n → ∞,

P

[
Bn > ϵn

∣∣∣∣∣
n∑

i=1

Xi > n

]
→ 0,

and

P

[
An < (1− ϵ)n

∣∣∣∣∣
n∑

i=1

Xi > n

]
→ 0.

(In words, to make the summation large, typically one of the numbers make the most contribution.)
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Problem 5: Random surfaces. Take a finite connected graph (V,E), and B ⊂ V . Let Ω be a
finite subset of R, and f = {fv}v∈B, g = {gv}v∈B ∈ ΩB, such that fv ≤ gv for each v ∈ B. For each
edge (u, v) ∈ E, take a convex function Φ(u,v) : R → R. Consider two probability measures µ and

ν on ΩV \B, given by

µ(h) =
1

Zµ
exp

(
−

∑
(u,v)∈E:u,v∈V \B

Φ(u,v)(hu − hv)−
∑

(u,v)∈E:u∈B,v∈V \B

Φ(u,v)(fu − hv)

)
,

ν(h) =
1

Zν
exp

(
−

∑
(u,v)∈E:u,v∈V \B

Φ(u,v)(hu − hv)−
∑

(u,v)∈E:u∈B,v∈V \B

Φ(u,v)(gu − hv)

)
.

for any h ∈ ΩV \B. (Here Zµ and Zν are renormalization constants.) Show that ν stochastically
dominates µ.

Problem 6: Sample covariance matrix with ‘not-so-high’ dimension. Let X be a p × n
matrix with i.i.d. Rademacher entries (i.e., each P[Xij = 1] = P[Xij = −1] = 1

2 , independently).
Show that as n → ∞ while p/n → 0, there is∥∥∥∥ 1nXXT − Ip

∥∥∥∥
2

→ 0

in probability. Here ∥ · ∥2 denotes the operator norm in L2(Rp).
Hint: Use ε-net arguments. (You may want to compare this with the Marchenko-Pastur law.)

Problem 7: Cut corners in GUE. Let Z = (Zij)
n
i,j=1 be the n × n GUE matrix; i.e., Zii are

i.i.d. ∼ N (0, 1) and Zij (for i < j) are i.i.d. ∼ NC(0, 1), and Zij = Zji. Let its eigenvalues be
λ1 ≥ · · · ≥ λn. Also let µ1 ≥ · · ·µn−1 be the eigenvalues of the upper-left (n− 1)× (n− 1) corner
(Zij)

n−1
i,j=1.

Find the joint probability density of (λi)
n
i=1 and (µi)

n−1
i=1 (up to multiplying a constant factor).

Hint: Diagonalize (Zij)
n−1
i,j=1 = O∗DO such that D = diag(µ1, . . . , µn−1). Then show that for each

1 ≤ i ≤ n− 1,

|ui|2 = −
∏n

j=1(µi − λj)∏
1≤j≤n−1;j ̸=i(µi − µj)

,

where u1, . . . , un−1 are the first n − 1 entries of the last column of ÕZÕ∗, for Õ being the n × n
orthonormal matrix with O being its upper-left (n− 1)× (n− 1) corner, and Õnn = 1; and

Znn =
n∑

j=1

λj −
n−1∑
j=1

µj .

These identities can be proved by computing the characteristic polynomial of Z in terms of (λi)
n
i=1

and (µi)
n−1
i=1 , (ui)

n−1
i=1 , Znn respectively. Then compute the Jacobian of the map

(
(ui)

n−1
i=1 , Znn

)
7→

(λi)
n
i=1, for given (µi)

n−1
i=1 .
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