MA 17: HOW TO SOLVE IT HANDOUT 2: ELEMENTARY NUMBER THEORY Instructor Lingfu Zhang (lingfuz@caltech) Office Linde Hall 358 TA Minghao Pan (mpan2@caltech) **Extremal elements**. (left from last time) #### Problem 11. 100 soccer teams participate in a tournament, with one match between every two teams (resulting in each team playing 99 games). Suppose that no team wins all 99 games. Prove that there exist three teams A, B, and C, such that A beats B, B beats C, and C beats A. # **Problem 12.** (IMO 1988) Let a and b be positive integers such that ab + 1 divides $a^2 + b^2$. Show that $\frac{a^2 + b^2}{ab + 1}$ is the square of an integer. **Prime Factorization**. Any positive integer n can be uniquely written as $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, where p_1, p_2, \ldots, p_k are prime numbers, and a_1, a_2, \ldots, a_k are positive integers. **Modular Arithmetic.** $a \equiv b \pmod{n}$ (a and b are congurent modulo n) if a - b is divisible by n. This divides all integers into n equivalent classes $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. The ring structure of \mathbb{Z} induces a ring structure on \mathbb{Z}_n . # **Problem 1.** (Putnam 2024, A1) Determine all positive integers n for which there exist positive integers a, b, and c satisfying $$2a^n + 3b^n = 4c^n.$$ ## Problem 2. The last four digits of a perfect square are equal. Prove that they are all equal to zero. #### Problem 3. Fermat's Little Theorem Let p be a prime number, and n an integer. Then $$n^p - n \equiv 0 \pmod{p}$$. #### **Problem 4.** (Putnam 2024, A4) Find all primes p > 5 for which there exists an integer a and an integer r satisfying $1 \le r \le p-1$ with the following property: the sequence $1, a, a^2, \ldots, a^{p-5}$ can be rearranged to form a sequence $b_0, b_1, b_2, \ldots, b_{p-5}$ such that $b_n - b_{n-1} - r$ is divisible by p for $1 \le n \le p-5$. #### Problem 5. Let p be a prime number. Show that from any 2p-1 integers, one can choose p of them, whose sum is divisible by p. **Primitive root**. A positive number g is called a primitive root modulo n if, for every integer a that is coprime to n, there exists an integer k such that $$g^k \equiv a \pmod{n}$$. If p is a prime number, then g is a primitive root modulo p if and only if the multiplicative order of g modulo p is equal to p-1. For every prime number p, there exists at least one primitive root modulo p. Sketch proof. Consider the multiplicative group $\mathbb{F}_p^{\times} = \{1, 2, \dots, p-1\}$. Note that this is an abelian group, so by the fundamental theorem of finite abelian groups, it can be written as a product of cyclic groups $$C_{q_1} \oplus C_{q_2} \oplus \cdots \oplus C_{q_k}$$, where q_1, q_2, \ldots, q_k are powers of (not necessarily distinct) primes, and $q_1q_2\cdots q_k=p-1$. Let m be the least common multiple of q_1, q_2, \ldots, q_k . Then m divides p-1, and $x^m \equiv 1 \pmod{p}$ for each $x \in \mathbb{F}_p^{\times}$. On the other hand, the polynomial $x^m - 1$ has at most m roots modulo p, so we must have $m \geq p-1$. Thus m = p-1, and q_1, q_2, \ldots, q_k are coprime to each other. This implies that q_1, q_2, \ldots, q_k are powers of distinct primes, and hence the group $$\mathbb{F}_p^{\times} = C_{q_1} \oplus C_{q_2} \oplus \cdots \oplus C_{q_k}$$ is isomorphic to $C_{q_1q_2\cdots q_k}=C_{p-1}$, whose generator is a primitive root modulo p. ## Problem 6. Let p be an odd prime number. Show that the equation $$x^2 \equiv -1 \pmod{p}$$ has a solution if and only if $p \equiv 1 \pmod{4}$. #### **Problem 7.** (Putnam 2021, A5) Let A be the set of all integers n such that $1 \le n \le 2021$ and gcd(n, 2021) = 1. For every nonnegative integer j, let $$S(j) = \sum_{n \in A} n^j.$$ Determine all values of i such that S(i) is a multiple of 2021. **Base numbers.** For any integer q > 1, every positive integer can be uniquely written as $$a_n g^n + a_{n-1} g^{n-1} + \dots + a_1 g + a_0$$ where each $a_i \in \{0, 1, ..., g - 1\}$ and $a_n \neq 0$. (For example, g = 2 gives the binary representation, and g = 10 gives the decimal representation.) #### Problem 8. Consider the integers $1, 2, \dots, 2^k - 1$ for $k \ge 2$. Among them, some have an even sum of digits in their binary representation. Find the sum of all such integers. ## **Problem 9.** (Putnam 2020, B1) For a positive integer n, define d(n) to be the sum of the digits of n when written in binary (for example, d(13) = 1 + 1 + 0 + 1 = 3). Let $$S = \sum_{k=1}^{2020} (-1)^{d(k)} k^3.$$ Determine S modulo 2020. **Reminder** PSet 1 is due by the end of Oct 8 (on Canvas). The first problem session (to discuss PSet 1) will be on Oct 9, 7-8 PM, at the same location.