MA 17: HOW TO SOLVE IT HANDOUT 6: DISCUSSIONS OF PSET 5 AND MOCK 3

Instructor Lingfu Zhang (lingfuz@caltech) Office Linde Hall 358 TA Minghao Pan (mpan2@caltech)

Selected problems from PSet 5:

Problem 2. Let G be a finite set of real $n \times n$ matrices $\{M_i\}_{i=1}^r$ which form a group under matrix multiplication. Suppose that

$$\sum_{i=1}^{r} \operatorname{tr}(M_i) = 0,$$

where tr(A) denotes the trace of the matrix A. Prove that

$$\sum_{i=1}^{r} M_i$$

is the $n \times n$ zero matrix.

Problem 6. Suppose f(x) is a polynomial with real coefficients such that $f(x) \ge 0$ for all x. Show that there exist polynomials g(x) and h(x) with real coefficients such that

$$f(x) = g(x)^2 + h(x)^2.$$

Problem 8. For the $n \times n$ matrix whose (i, j) entry is 1/(i+j-1), prove that it is invertible, and its inverse has integer entries.

Some more problems (analysis, inequality, and sums/integrals):

Problem 1. Let a_1, a_2, \ldots, a_n be real numbers. Show that

$$\min_{i < j} (a_i - a_j)^2 \le \frac{12}{n(n^2 - 1)} (a_1^2 + a_2^2 + \dots + a_n^2).$$

Problem 2. Show that if r_1, \ldots, r_n are nonnegative real numbers and x_1, \ldots, x_n are real numbers, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \min(r_i, r_j) x_i x_j \ge 0.$$

Problem 3. (Putnam 2017, A3)

Let a and b be real numbers with a < b, and let f and g be continuous functions from [a,b] to

 $(0,\infty)$ such that $\int_a^b f(x) dx = \int_a^b g(x) dx$ but $f \neq g$. For every positive integer n, define

$$I_n = \int_a^b \frac{(f(x))^{n+1}}{(g(x))^n} dx.$$

Show that I_1, I_2, I_3, \ldots is an increasing sequence with $\lim_{n\to\infty} I_n = \infty$.

Consider using symmetry in the next two problems.

Problem 4. Compute $\int_{-1}^{1} \frac{\cos(x)}{e^x+1} dx$.

Problem 5. (Putnam 2020, B4)

Let n be a positive integer, and let V_n be the set of integer (2n+1)-tuples $\mathbf{v}=(s_0,s_1,\cdots,s_{2n-1},s_{2n})$ for which $s_0=s_{2n}=0$ and $|s_j-s_{j-1}|=1$ for $j=1,2,\cdots,2n$. Define

$$q(\mathbf{v}) = 1 + \sum_{j=1}^{2n-1} 3^{s_j},$$

and let M(n) be the average of $\frac{1}{q(\mathbf{v})}$ over all $\mathbf{v} \in V_n$. Evaluate M(2020).

Another problem on rational/irrational numbers:

Problem 6. (Putnam 2017, B3)

Suppose that $f(x) = \sum_{i=0}^{\infty} c_i x^i$ is a power series for which each coefficient c_i is 0 or 1. Show that if f(2/3) = 3/2, then f(1/2) must be irrational.

Reminder PSet 6 to be released today, and due by the end of Dec 1 (on Canvas). No problem session this week, and happy thanksgiving!