Shift-Invariance of the Colored TASEP

Lingfu Zhang

Princeton University
Department of Mathematics

November 11, 2021
UW-Madison Probability Seminar
arXiv:2107.06350
The models: TASEP, colors, six-vertex
Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:
Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:
Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:

Rotate by $\frac{\pi}{4}$, this corresponds to a corner growth process:
Totally Asymmetric Simple Exclusion Process (TASEP), and growing surface:

Rotate by $\frac{\pi}{4}$, this corresponds to a corner growth process:
TASEP and LPP

TASEP with step initial configuration also corresponds to Last Passage Percolation (LPP) with fixed starting point.

\[\xi(v) \sim \text{Exp}(1), \text{i.i.d. } \forall v \in \mathbb{Z}^2 \]

Passage time:
\[L_{u,v} := \max_{\gamma} \sum_{w \in \gamma} \xi(w) \]

LPP on \(\mathbb{Z}^2 \):

- \(\xi(v) \sim \text{Exp}(1), \text{i.i.d. } \forall v \in \mathbb{Z}^2 \)
- Passage time: \(L_{u,v} := \max_{\gamma} \sum_{w \in \gamma} \xi(w) \)
Known Results on LPP/Corner growth

- $L_{(0,0),(n,n)} \sim 4n$ (Rost, 1981).
- $2^{-4/3} n^{-1/3}(L_{(0,0),(n,n)} - 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).
- Point to line profile (Borodin and Ferrari, 2008)
 \[
 2^{-4/3} n^{-1/3} \left(L_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})} - 4n \right) \Rightarrow \mathcal{A}_2(x) - x^2
 \]
 \mathcal{A}_2 is stationary and absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014).
- KPZ fixed point (Matetski, Quastel, and Remenik, 2017)
 Airy sheet (Dauvergne, Ortmann, and Virág, 2018).
TASEP with colors

One particle at each integer, and the particle at i is labeled i.
TASEP with colors

One particle at each integer, and the particle at \(i \) is labeled \(i \).

\[
\begin{array}{ccccccccc}
-9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]

Rule of update: if \(a < b \), then with rate 1:

\[
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\]

but

\[
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{ } \text{ } \\
\text{ } \text{ }
\end{array}
\end{array}
\]

Alternative description: a family of coupled step initial TASEPs, by considering all particles \(\leq i \).
TASEP with colors

One particle at each integer, and the particle at i is labeled i.

Rule of update: if $a < b$, then with rate 1:

$$\begin{array}{c}
\text{a} & \text{b} \\
\rightarrow \\
\text{b} & \text{a}
\end{array}$$

but

$$\begin{array}{c}
\text{b} & \text{a} \\
\times \\
\rightarrow \\
\text{a} & \text{b}
\end{array}$$

Alternative description: a family of coupled step initial TASEPs, by considering all particles $\leq i$.
A general model in integrable probability (figures from Vadim):

- Color 7 (purple)
- Color 6 (blue)
- Color 5 (cyan)
- Color 4 (green)
- Color 3 (yellow)
- Color 2 (orange)
- Color 1 (red)
- Color 0 (gray)

Legend:

- \(\square \) = smaller color
- \(\square \) = larger color

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>1 - (b_1)</th>
<th>1 - (b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lingfu Zhang
Princeton
LPP geodesic environment
Nov 11, UW-Madison Probability Seminar
A general model in integrable probability (figures from Vadim):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>b_1</th>
<th>b_2</th>
<th>$1 - b_1$</th>
<th>$1 - b_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= smaller color
= larger color
Symmetries for the colored TASEP

Let $\zeta_t : \mathbb{Z} \to \mathbb{Z}$ be the configuration of the colored TASEP at time t. In particular, ζ_0 is the identity map.

The following has the same distribution as ζ_t:

- $x \mapsto \zeta_t(x - y) + y$ for any $y \in \mathbb{Z}$
- $x \mapsto -\zeta_t(-x)$
- ζ_t^{-1} (color-to-position symmetry, see e.g. Amir, Angel, and Valkó, 2011; Angel, Holroyd, and Romik, 2009; Borodin and Bufetov, 2021)
- New shift/flip invariance by Borodin, Gorin, and Wheeler, 2019; Galashin, 2020, from the colored stochastic 6-vertex model
Some recent developments on integrable models

Height function in the colored stochastic 6-vertex model (figure from Vadim).

\[H^i(x, y) : \text{number of paths with color } \geq i \text{ to the right of/below } (x, y). \]
Some recent developments on integrable models

Height function in the colored stochastic 6-vertex model (figure from Vadim).

\[\mathcal{H}^i(x, y) : \text{number of paths with color } \geq i \text{ to the right of/below } (x, y). \]

Theorem (Borodin, Gorin, and Wheeler, 2019)

Let \(1 \leq \tau \leq n, \) and \(k'_i = k_i + 1[i = \tau], U'_i = U_i + (0, 1[i = \tau]). \)
Under intersection conditions, we have

\[\left\{ \mathcal{H}^{k_i}(U_i) \right\}_{i=1}^n \overset{d}{=} \left\{ \mathcal{H}^{k'_i}(U'_i) \right\}_{i=1}^n. \]

Passage times in colored TASEP:

\[T^A_{B,C} = \inf \{ t \geq 0 : |\{ x \geq A + B + 1 - C : \zeta_t(x) \leq A\}| \geq C \}. \]

Corresponds to: LPP time \(L_{(1,1),(B,C)} \).
(recall: \(\{ x : \zeta_t(x) \leq A \} \) gives step initial TASEP)
New shift-invariance for colored TASEP

Passage times in colored TASEP:

\[T_{B,C}^A = \inf \{ t \geq 0 : | \{ x \geq A + B + 1 - C : \zeta_t(x) \leq A \} | \geq C \}. \]

Corresponds to: LPP time \(L_{(1,1),(B,C)} \).
(recall: \(\{ x : \zeta_t(x) \leq A \} \) gives step initial TASEP)
One can degenerate the results in Galashin, 2020 to the following:

Theorem

Let \(1 \leq \tau \leq n \) and \(A_i^+ = A_i + 1[i > \tau] \). Under intersection conditions,

\[
\max_i T_{B_i,C_i}^{A_i} \overset{d}{=} \max_i T_{B_i,C_i}^{A_i^+}.
\]
New shift-invariance for colored TASEP

Passage times in colored TASEP:
\[T_{B,C}^{A} = \inf \{ t \geq 0 : |\{ x \geq A + B + 1 - C : \zeta_t(x) \leq A\}| \geq C \}. \]

Corresponds to: LPP time \(L_{(1,1),(B,C)} \).
(recall: \(\{ x : \zeta_t(x) \leq A \} \) gives step initial TASEP)
One can degenerate the results in Galashin, 2020 to the following:

Theorem

Let \(1 \leq \tau \leq n \) and \(A_i^+ = A_i + 1[i > \tau] \). Under intersection conditions,
\[\max_i T_{B_i,C_i}^{A_i} \overset{d}{=} \max_i T_{B_i,C_i}^{A_i^+}. \]

We get a stronger result for this.

Theorem (Zhang, 2021)

Let \(1 \leq \tau \leq g \) and \(A_{i,j}^+ = A_{i,j} + 1[i > \tau] \). Under intersection conditions,
\[\left\{ \max_{1 \leq j \leq k_i} T_{B_{i,j},C_{i,j}}^{A_{i,j}} \right\}_{i=1}^g \overset{d}{=} \left\{ \max_{1 \leq j \leq k_i} T_{B_{i,j},C_{i,j}}^{A_{i,j}^+} \right\}_{i=1}^g. \]

Lingfu Zhang
Princeton
LPP geodesic environment
Nov 11, UW-Madison Probability Seminar
New shift-invariance for colored TASEP

Theorem (Zhang, 2021)

Let $1 \leq \tau \leq g$ and $A_{i,j}^+ = A_{i,j} + 1[i > \tau]$. Under intersection conditions,

$$\left\{ \max_{1 \leq j \leq k_i} T_{A_{i,j}}^{A_{i,j}} \right\}_{i=1}^{g} \overset{d}{=} \left\{ \max_{1 \leq j \leq k_i} T_{B_{i,j},C_{i,j}}^{A_{i,j}} \right\}_{i=1}^{g}.$$

The intersection conditions:

$$A_{i,j} \leq A_{i',j'}, \quad A_{i,j}^+ + B_{i,j} \geq A_{i',j'}^+ + B_{i',j'}, \quad A_{i,j}^+ - C_{i,j} \geq A_{i',j'}^+ - C_{i',j'},$$

for any $1 \leq i < i' \leq g$ and $1 \leq j \leq k_i, 1 \leq j' \leq k_{i'}$.
New shift-invariance for colored TASEP

Theorem (Zhang, 2021)

Let $1 \leq \tau \leq g$ and $A_{i,j}^+ = A_{i,j} + 1[i > \tau]$. Under intersection conditions,

$$\left\{ \max_{1 \leq j \leq k_i} T_{B_{i,j},C_{i,j}}^{A_{i,j}} \right\}_{i=1}^g \overset{d}{=} \left\{ \max_{1 \leq j \leq k_i} T_{B_{i,j},C_{i,j}}^{A_{i,j}} \right\}_{i=1}^g .$$

The intersection conditions:

$$A_{i,j} \leq A_{i',j'}, \quad A_{i,j}^+ + B_{i,j} \geq A_{i',j'}^+ + B_{i',j'}, \quad A_{i,j}^+ - C_{i,j} \geq A_{i',j'}^+ - C_{i',j'},$$

for any $1 \leq i < i' \leq g$ and $1 \leq j \leq k_i, 1 \leq j' \leq k_{i'}$.

For example: by using it repeatedly, for each N we have

$$\left\{ T_{N-k,k}^1 \right\}_{k=1}^{N-1} \overset{d}{=} \left\{ T_{N-k,k}^k \right\}_{k=1}^{N-1} .$$

Previously, only know that the maximum are equal in distribution.
The Oriented Swap Process
A shortest path in the group S_N, from $(1, \cdots, N)$ to $(N, \cdots, 1)$, swapping two neighboring numbers at a time.

$$\frac{N(N-1)}{2}$$ steps, swap i, j to j, i if $i < j$.
A shortest path in the group S_N, from $(1, \cdots, N)$ to $(N, \cdots, 1)$, swapping two neighboring numbers at a time.

\[
\frac{N(N-1)}{2} \text{ steps, swap } i, j \text{ to } j, i \text{ if } i < j.
\]

1. Uniform measure
2. Oriented Swap Process: Markovian according to Poisson Clocks (Angel, Holroyd, and Romik, 2009).
A shortest path in the group S_N, from $(1, \cdots, N)$ to $(N, \cdots, 1)$, swapping two neighboring numbers at a time.

$$\frac{N(N-1)}{2}$$ steps, swap i, j to j, i if $i < j$.

1. Uniform measure
2. Oriented Swap Process: Markovian according to Poisson Clocks (Angel, Holroyd, and Romik, 2009).

A simulation with $N = 1000$ (from Angel, Holroyd, and Romik, 2009).
OSP can be viewed as the colored TASEP on an interval $[1, N]$. In Angel, Holroyd, and Romik, 2009, some truncation operators are used to connect TASEP on \mathbb{Z} with TASEP on an interval.
OSP can be viewed as the colored TASEP on an interval $[1, N]$. In Angel, Holroyd, and Romik, 2009, some truncation operators are used to connect TASEP on \mathbb{Z} with TASEP on an interval.

In particular: single particle trajectory; the finishing time of a single particle has fluctuation of $\sim N^{1/3}$ with GUE Tracy-Widom limit.
OSP and colored TASEP

OSP can be viewed as the colored TASEP on an interval $[1, N]$.

In Angel, Holroyd, and Romik, 2009, some truncation operators are used to connect TASEP on \mathbb{Z} with TASEP on an interval.

In particular: single particle trajectory; the finishing time of a single particle has fluctuation of $\sim N^{1/3}$ with GUE Tracy-Widom limit.

Absorbing time: the time when the OSP terminates.

Question

What are the fluctuations and limiting law of the absorbing time?
A conjecture on the finishing times

Take \(U_N = (U_N(1), \ldots, U_N(N-1)) \), where \(U_N(k) \) is the last time such that a swap happens between the sites \(k \) and \(k + 1 \).

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin, and Romik, 2020)

\[
U_N \overset{d}{=} \{ L_{(1,1), (k,N-k)} \}_{k=1}^{N-1}.
\]
A conjecture on the finishing times

Take $\mathbf{U}_N = (U_N(1), \ldots, U_N(N - 1))$, where $U_N(k)$ is the last time such that a swap happens between the sites k and $k + 1$.

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin, and Romik, 2020)

$$\mathbf{U}_N \overset{d}{=} \{L_{(1,1),(k,N-k)}\}_{k=1}^{N-1}.$$

Some results

1. Single k.
2. $N \leq 6$ (computer-assisted).
3. $\max_{1 \leq k \leq N-1} U_N(k) \overset{d}{=} \max_{1 \leq k \leq N-1} L_{(1,1),(k,N-k)}$
A conjecture on the finishing times

Take $U_N = (U_N(1), \ldots, U_N(N-1))$, where $U_N(k)$ is the last time such that a swap happens between the sites k and $k+1$.

Conjecture (Bisi, Cunden, Gibbons, and Romik, 2020; Bufetov, Gorin, and Romik, 2020)

$U_N \overset{d}{=} \{L_{(1,1),(k,N-k)}\}_{k=1}^{N-1}$.

Some results

1. Single k.
2. $N \leq 6$ (computer-assisted).
3. $\max_{1 \leq k \leq N-1} U_N(k) \overset{d}{=} \max_{1 \leq k \leq N-1} L_{(1,1),(k,N-k)} \Rightarrow$ OSP absorbing time converges to GOE Tracy-Widom.
Result on OSP and implications

Theorem (Zhang, 2021)

\[U_N \overset{d}{=} \left\{ L_{(1,1),(k,N-k)} \right\}_{k=1}^{N-1} . \]
Theorem (Zhang, 2021)

\[U_N \overset{d}{=} \left\{ L_{(1,1), (k,N-k)} \right\}_{k=1}^{N-1}. \]

Some implications (using the asymptotic results of LPP):

1. Under \(N^{2/3}, N^{1/3} \) scaling, \(U_N \) converges to the parabolic Airy_2 process.

2. Consider \(k_* \) such that the last swap is between sites \(k_* \) and \(k_* + 1 \); then \(N^{-2/3} (k_* - N/2) \) converges.

3. In scale smaller than \(N^{2/3} \), \(U_N \) converges to simple random walk.
Proof ideas
From the colored TASEP shift invariance to OSP finishing times:

\[
\left\{ L_{(1,1),(k,N-k)} \right\}_{k=1}^{N-1} \overset{d}{=} \left\{ T_{N-k,k}^{1} \right\}_{k=1}^{N-1} \overset{d}{=} \left\{ T_{N-k,k}^{k} \right\}_{k=1}^{N-1} \overset{d}{=} U_N.
\]

From the colored TASEP shift invariance to OSP finishing times:

\[
\{L_{(1,1),(k,N-k)}\}_{k=1}^{N-1} \overset{d}{=} \{T_{N-k,k}^1\}_{k=1}^{N-1} \overset{d}{=} \{T_{N-k,k}^k\}_{k=1}^{N-1} = U_N.
\]

Shift invariance: an example

Take \(B, C \geq 2\). Goal: show that \(T_{B,1}^0, T_{1,C}^0 \overset{d}{=} T_{B,1}^0, T_{1,C}^1\).

\(T_{B,1}^0, T_{1,C}^0\): TASEP with labels \(\leq 0\)
From colored TASEP shift invariance to OSP finishing times:

\[
\left\{ L_{(1,1),(k,N-k)} \right\}_{k=1}^{N-1} \overset{d}{=} \left\{ T_{N-k,k}^1 \right\}_{k=1}^{N-1} \overset{d}{=} \left\{ T_{N-k,k}^k \right\}_{k=1}^{N-1} \overset{d}{=} U_N.
\]

Shift invariance: an example

Take \(B, C \geq 2 \). Goal: show that \(T_{B,1}^0, T_{1,C}^0 \overset{d}{=} T_{B,1}^0, T_{1,C}^1 \).

\(T_{B,1}^0, T_{1,C}^0 \): TASEP with labels \(\leq 0 \)

\[\begin{array}{ccc
From colored TASEP shift invariance to OSP finishing times:

\[
\{L_{(1,1),(k,N-k)}\}_{k=1}^{N-1} \overset{d}{=} \{T_{N-k,k}^1\}_{k=1}^{N-1} \overset{d}{=} \{T_{N-k,k}^k\}_{k=1}^{N-1} \overset{d}{=} U_N.
\]

Shift invariance: an example

Take \(B, C \geq 2\). Goal: show that \(T^0_{B,1}, T^0_{1,C} \overset{d}{=} T^0_{B,1}, T^1_{1,C}\).

\(T^0_{B,1}, T^0_{1,C}\): TASEP with labels \(\leq 0\)

\(T^0_{B,1}, T^1_{1,C}\):
From colored TASEP shift invariance to OSP finishing times:

\[\{ L_{(1,1),(k,N-k)} \}_{k=1}^{N-1} \overset{d}{=} \{ T^1_{N-k,k} \}_{k=1}^{N-1} \overset{d}{=} \{ T^k_{N-k,k} \}_{k=1}^{N-1} \overset{d}{=} U_N. \]

Shift invariance: an example

Take \(B, C \geq 2 \). Goal: show that \(T^0_{B,1}, T^0_{1,C} \overset{d}{=} T^0_{B,1}, T^1_{1,C} \).

\(T^0_{B,1}, T^0_{1,C} \): TASEP with labels \(\leq 0 \)

\(T^0_{B,1}, T^1_{1,C} \):

Since time \(T^0_{2,1} \), the blue particle is to the right of the red particle \(\Rightarrow \) independent evolution.
From colored TASEP shift invariance to OSP finishing times:

\[
\{ L_{(1,1),(k,N-k)} \}_{k=1}^{N-1} \overset{d}{=} \{ T^1_{N-k,k} \}_{k=1}^{N-1} \overset{d}{=} \{ T^k_{N-k,k} \}_{k=1}^{N-1} \overset{d}{=} U_N.
\]

Shift invariance: an example

Take \(B, C \geq 2 \). Goal: show that \(T^0_B, T^0_1 \overset{d}{=} T^0_B, T^1_1 \).

\(T^0_B, T^0_1 \): TASEP with labels \(\leq 0 \)

Since time \(T^0_2 \), the blue particle is to the right of the red particle
\(\Rightarrow \) independent evolution.

Need ‘equal’ in distribution of the configurations at \(T^0_2 \);

Use \(\max\{ T^0_{B',1}, T^0_{1,C'} \} \overset{d}{=} \max\{ T^0_{B',1}, T^1_{1,C'} \} \).
From colored TASEP shift invariance to OSP finishing times:

\[\{ L_{(1,1), (k,N-k)} \}_{k=1}^{N-1} \overset{d}{=} \{ T^1_{N-k,k} \}_{k=1}^{N-1} \overset{d}{=} \{ T^k_{N-k,k} \}_{k=1}^{N-1} \overset{d}{=} U_N. \]

Shift invariance: an example

Take \(B, C \geq 2 \). Goal: show that \(T^0_{B,1}, T^0_{1,C} \overset{d}{=} T^0_{B,1}, T^1_{1,C} \).

\(T^0_{B,1}, T^0_{1,C} \): TASEP with labels \(\leq 0 \)

\(T^0_{B,1}, T^1_{1,C} \): TASEP with labels \(\leq 0 \)

Since time \(T^0_{2,1} \), the blue particle is to the right of the red particle \(\Rightarrow \) independent evolution.

Need ‘equal’ in distribution of the configurations at \(T^0_{2,1} \).

Use \(\max \{ T^0_{B',1}, T^0_{1,C'} \} \overset{d}{=} \max \{ T^0_{B',1}, T^1_{1,C'} \} \).

General: inductive arguments
Further questions
Can some of the constraints be relaxed?

For \(P[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2} < t_2] = P[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2} < t_2] \), need

1. \(A_1 \leq A_2, A_2' \)
2. \(A_1 - C_1 \geq A_2 - C_2, A_2' - C_2 \)
3. \(A_1 + B_1 \geq A_2 + B_2, A_2' + B_2 \)
Can some of the constraints be relaxed?

For $\mathbb{P}[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2} < t_2] = \mathbb{P}[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2'} < t_2]$, need

1. $A_1 \leq A_2, A_2'$
2. $A_1 - C_1 \geq A_2 - C_2, A_2' - C_2$
3. $A_1 + B_1 \geq A_2 + B_2, A_2' + B_2$

For $t_1 = t_2$, just need (1) and

4. $A_1 + B_1 - C_1 \geq A_2 + B_2 - C_2, A_2' + B_2 - C_2$

Note that (1)+(2)+(3) implies (1)+(4).
Can some of the constraints be relaxed?

For $P[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2} < t_2] = P[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2'} < t_2]$, need

1. $A_1 \leq A_2, A_2'$
2. $A_1 - C_1 \geq A_2 - C_2, A_2' - C_2$
3. $A_1 + B_1 \geq A_2 + B_2, A_2' + B_2$

For $t_1 = t_2$, just need (1) and

4. $A_1 + B_1 - C_1 \geq A_2 + B_2 - C_2, A_2' + B_2 - C_2$

Note that (1)+(2)+(3) implies (1)+(4).

For $t_1 \leq t_2$, need (1) (3) (4).
Can some of the constraints be relaxed?

For $\mathbb{P}[T_{B_1, C_1}^{A_1} < t_1, T_{B_2, C_2}^{A_2} < t_2] = \mathbb{P}[T_{B_1, C_1}^{A_1} < t_1, T_{B_2, C_2}^{A_2'} < t_2]$, need

1. $A_1 \leq A_2, A_2'$
2. $A_1 - C_1 \geq A_2 - C_2, A_2' - C_2$
3. $A_1 + B_1 \geq A_2 + B_2, A_2' + B_2$

For $t_1 = t_2$, just need (1) and

4. $A_1 + B_1 - C_1 \geq A_2 + B_2 - C_2, A_2' + B_2 - C_2$

Note that (1)+(2)+(3) implies (1)+(4).

For $t_1 \leq t_2$, need (1) (3) (4).

Question: what is the key property? Crossing of paths?
Can some of the constraints be relaxed?

For $\mathbf{P}[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2} < t_2] = \mathbf{P}[T_{B_1,C_1}^{A_1} < t_1, T_{B_2,C_2}^{A_2'} < t_2]$, need

1. $A_1 \leq A_2, A_2'$
2. $A_1 - C_1 \geq A_2 - C_2, A_2' - C_2$
3. $A_1 + B_1 \geq A_2 + B_2, A_2' + B_2$

For $t_1 = t_2$, just need (1) and

4. $A_1 + B_1 - C_1 \geq A_2 + B_2 - C_2, A_2' + B_2 - C_2$

Note that (1)+(2)+(3) implies (1)+(4).

For $t_1 \leq t_2$, need (1) (3) (4).

Question: what is the key property? Crossing of paths?

Scaling limit of the colored TASEP?

Two families of TASEPs: LPP and colored TASEP.

LPP \rightarrow Airy Sheet

$(x, y) \mapsto n^{-1/3}(L_{(xn^{2/3}, -xn^{2/3}), (n-yn^{2/3}, n+yn^{2/3})} - 4n)$

Colored TASEP?

$(x, y) \mapsto n^{-1/3}(T_{n^{2/3}(y-x), n-2/3(y-x)}^{n^{2/3}(y-x), n-2/3(y-x)} - 4n)$?
Thank you!

