

From the KPZ fixed point to the directed landscape

Lingfu Zhang

California Institute of Technology

Seminário de Probabilidade e Mecânica Estatística

Feb 12, 2025

Joint work with Duncan Dauvergne (arxiv:2412.13032)

KPZ fixed point (KPZ FP)

Markov process in the UC space

Space of all upper semi-continuous functions $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$, with $\sup \frac{f(x)}{1+|x|} < \infty$

Transition probability explicit:

(starting from h_0) $P_{h_0}(h(t, x_i) \le r_i, i = 1, ..., m) = \det(I - \mathbf{K}_{h_0, x_i, r_i, t})_{L^2(\mathbb{R}_+; \mathbb{R}^m)}$

where
$$(\mathbf{K}_{h_0,x_i,r_i,t})_{ij} = \lim_{L \to \infty} e^{-\frac{1}{3}t\partial^3 - (x_i+L)\partial^2 + r_i\partial} (\mathbf{P}_{-L,L}^{\text{Hit }h_0} - \mathbf{1}_{x_i < x_j}) e^{\frac{1}{3}t\partial^3 + (x_j-L)\partial^2 - r_j\partial}$$

Scaling limit of 1D exclusion processes/growth model, KPZ equation, etc.

KPZ fixed point (KPZ FP)

1D exclusion process

- > Particle at x jumps to x + v with rate p(v), if x + v is empty
- ▶ Jump generator $p: \mathbb{Z} \to \mathbb{R}_{\geq 0}$, such that $\{v: p(v) + p(-v) > 0\}$ is finite and generates \mathbb{Z}
- ➤ (normalized) asymmetric assumption: $\sum_{v} vp(v) = 1$

Height function $h: \mathbb{Z} \to \mathbb{Z}$, such that h(x + 1) = h(x) + 1 if x occupied, h(x + 1) = h(x) - 1 if x empty

1:2:3 scaling
$$h_{\varepsilon}(t,x) = \varepsilon^{1/2}h(2\varepsilon^{-3/2}t, 2\varepsilon^{-1}x) - \varepsilon^{-1}t$$

 $h_{\varepsilon} \rightarrow \text{KPZ}$ fixed point as $\varepsilon \rightarrow 0$

(Matetski-Quastel-Remenik, 16') Totally asymmetric nearest neighbor (TASEP): p(1) = 1, p(v) = 0 all other v(Quastel-Sarkar, 20') General p; slightly weaker sense for non-nearest neighbor

KPZ fixed point (KPZ FP)

KPZ equation (Kardar-Parisi-Zhang, 86')

$$\partial_t h = \frac{1}{4} (\partial_x h)^2 + \frac{1}{4} \partial_x^2 h + \xi$$

Long time limit: 1:2:3 scaling $h \mapsto \delta h(\delta^{-3}t, \delta^{-2}x)$

$$\partial_t h = \frac{1}{4} (\partial_x h)^2 + \frac{\delta}{4} \partial_x^2 h + \delta^{1/2} \xi$$

As $\delta \rightarrow 0$, KPZ equation converges to KPZ FP (Quastel-Sarkar, 20'); also (Virag, 20')

Let's next introduce the other object, the directed landscape

Directed landscape (DL)

A four-parameter random function $\mathcal{L}: \mathbb{R}^4_{\uparrow} \to \mathbb{R}$ $\mathbb{R}^{4}_{\uparrow} = \{ (x, s; y, t) \in \mathbb{R}^{4} : s < t \}$ Directed metric, $\mathcal{L}(x, s; y, t)$ is the distance from (x, s) to (y, t) $\mathcal{L}(\cdot, s; \cdot, t)$ $\mathcal{L}(x,r;y,t) = \max_{z \in \mathbb{R}} \mathcal{L}(x,r;z,s) + \mathcal{L}(z,s;y,t)$ **Example** Exponential Last Passage Percolation (LPP) $\mathcal{L}(\cdot,r;\cdot,s]$ ○ ξ(v) ∼ Exp(1), ∀v ∈ ℤ² independently• Passage time: $T(u, v) \coloneqq \max_{\gamma} \sum_{w \in \gamma} \xi(w)$, over all up-right path γ (x, r) $2^{-\frac{4}{3}}n^{-\frac{1}{3}}\left(T(R_n(x,s),R_n(y,t)) - 4n(t-s) - 2^{\frac{8}{3}}n^{\frac{2}{3}}(y-x)\right) \text{ converges to } \mathcal{L} \text{ as } n \to \infty$ $R_n: (x, s) \mapsto (ns + 2^{5/3}n^{2/3}x, ns)$

(Dauvergne-Ortmann-Virag, 18') Brownian LPP (Dauvergne-Virag, 21') Other LPPs

Directed landscape (DL)

A four-parameter random function $\mathcal{L} : \mathbb{R}^4_{\uparrow} \to \mathbb{R}$ $\mathbb{R}^4_{\uparrow} = \{(x, s; y, t) \in \mathbb{R}^4 : s < t\}$ Some **natural properties**

For disjoint $\{(t_i, s_i) : i \in \{1, \dots, k\}\}$ $\mathcal{L}(\cdot, t_i; \cdot, s_i), i \in \{1, \dots, k\}$ are independent Symmetry: 1. (Time stationarity) $\mathcal{L}(x, t; y, t + s) \stackrel{d}{=} \mathcal{L}(x, t + r; y, t + s + r).$ 2. (Spatial stationarity) $\mathcal{L}(x, t; y, t + s) \stackrel{d}{=} \mathcal{L}(x + c, t; y + c, t + s).$ 3. (Flip symmetry) $\mathcal{L}(x, t; y, t + s) \stackrel{d}{=} \mathcal{L}(-y, -s - t; -x, -t).$ 4. (Skew stationarity)

$$\mathcal{L}(x,t;y,t+s) \stackrel{d}{=} \mathcal{L}(x+ct,t;y+ct+sc,t+s) + s^{-1}[(x-y-sc)^2 - (x-y)^2].$$

5. (Rescaling)

 $\mathcal{L}(x,t;y,t+s) \stackrel{d}{=} q\mathcal{L}(q^{-2}x,q^{-3}t;q^{-2}y,q^{-3}(t+s)).$

Relation between KPZ FP and DL

DL generate KPZ FP; KPZ FP are marginals of DL

$$\mathcal{L}: \mathbb{R}^4_{\uparrow} \to \mathbb{R} \qquad \mathbb{R}^4_{\uparrow} = \{ (x, s; y, t) \in \mathbb{R}^4 : s < t \}$$

Example $\mathcal{L}(0,0; \cdot, t) = \text{KPZ} \text{ FP from } \delta_0$ at time t

$$\delta_0(0) = 0,$$

$$\delta_0(x) = -\infty \text{ for } x \neq 0$$

Variational formula KPZ FP starting from h_0 is given by $h_t(y) = \sup_{x \in \mathbb{R}} (h_0(x) + \mathcal{L}(x, 0; y, t))$

Why? A coupling between TASEP and Exponential LPP

Relation between KPZ FP and DL

Variational formula: KPZ FP starting from h_0 is $h_t(y) = \sup_{x \in \mathbb{R}} (h_0(x) + \mathcal{L}(x, 0; y, t))$

DL = a coupling of multiple KPZ FP

(same dynamics, different initial data)

For TASEP (p(1) = 1, p(v) = 0 all other v)

DL seems to contain more information than KPZ FP?

Is DL canonical for KPZ FP? Or is it special and just for LPP?

Synchronize Poisson clocks on particles

Our result: unify KPZ FP and DL

DL generates KPZ FP $h_t(y) = \sup_{x \in \mathbb{R}} (h_0(x) + \mathcal{L}(x, 0; y, t))$

DL seems to contain more information than KPZ FP?

Is DL canonical for KPZ FP? Or is it special and just for LPP?

(Dauvergne-Z., 24) For a family of random operators $\{\mathcal{K}_{s,t}\}_{s < t}$ on the UC space, if

1. <u>KPZ fixed point</u> $\mathcal{K}_{s,t}f$ has the same law as KPZ FP from f running for time t - s

2. Independent increments For any disjoint intervals $\{(s_i, t_i)\}_{i=1}^k$, \mathcal{K}_{s_i, t_i} are independent

3. <u>Monotonicity</u> $\mathcal{K}_{r,t}g \leq \mathcal{K}_{s,t}f$, for any $s \leq r < t$ and $g \leq \mathcal{K}_{s,r}f$

4. <u>Shift-invariant</u> $\mathcal{K}_{s,t}(f + c) = \mathcal{K}_{s,t}f + c$

Then $\{\mathcal{K}_{s,t}\}_{s < t}$ can be coupled with \mathcal{L} , such that $\mathcal{K}_{s,t}f = \sup f(x) + \mathcal{L}(x,s; \cdot, t)$.

Implication 1. KPZ FP contains all information of DL

2. All natural couplings should converge to DL (verify 2,3,4)

Applications to DL convergence

(Dauvergne-Z., 24)

- 1. **ASEPs** under various couplings, e.g., basic/particle couplings
- (The basic coupling case, i.e., colored ASEP, proved in Aggarwal-Corwin-Hegde, 24')
- 2. General 1D exclusion process under basic coupling
 - (1 & 2 use KPZ FP convergence in Quastel-Sarkar, 20')
- 3. KPZ equations coupled with the same noise
- (Using KPZ FP convergence in Quastel-Sarkar, 20' or Virag 20'; recover Wu, 23')
- 4. O'Connell-Yor polymer (KPZ FP convergence in Virag 20')
- 5. Brownian web/Coalescing random walk distance (KPZ FP convergence in Veto-Virag, 23')
- 6. Variants of TASEP: PushASEP, inhomogeneous speed, etc. (KPZ FP convergence in Matetski-Remenik 23')

In summary: we provide a framework to upgrade KPZ FP convergence to DL convergence

Proof ideas

Core task upgrade KPZ FP marginals to DL (Dauvergne-Z., 24) A characterization/uniqueness of DL: Suppose that $\mathcal{M}: \mathbb{R}^4_{\uparrow} \to \mathbb{R}$, $\mathbb{R}^4_{\uparrow} = \{(x, s; y, t) \in \mathbb{R}^4 : s < t\}$, is continuous, and 1. For any r < s < t, and x, y, z, we have $\mathcal{M}(x, r; y, t) \ge \mathcal{M}(x, r; z, s) + \mathcal{M}(z, s; y, t)$ 2. For any disjoint intervals $\{(s_i, t_i)\}_{i=1}^k$, $\mathcal{M}(\cdot, s_i; \cdot, t_i)$ are independent 3. For any s < t and UC f, g supported on finitely many points, we have (in distribution) $\sup_{x,y} \mathcal{M}(x, s; y, t) + f(x) + g(y) = \sup_{x,y} \mathcal{L}(x, s; y, t) + f(x) + g(y)$ Then \mathcal{M} must be the directed landscape, i.e., has the same law as \mathcal{L} .

TODO the joint law of $\mathcal{M}(x_1, 0; y_1, 1), \mathcal{M}(x_2, 0; y_2, 1)$ and $\mathcal{L}(x_1, 0; y_1, 1), \mathcal{L}(x_2, 0; y_2, 1)$ are the same

Using a *Lindeberg exchange strategy,* plus careful quantitative analysis

(Originated in Lindeberg's proof of CLT, 1922; widely used in e.g., hydrodynamics in Bohadoran-Guiol-Ravishankar-Saada, 02'; spin glass in Chatterjee, 04'; various problems in Mossel-O'Donnell-Oleszkiewicz 05'; random matrices: Chatterjee, 05', Tao-Vu, 07', Knowles-Yin, 17'; 2D polymer/stochastic heat flow, Caravenna-Sun-Zygouras, 21', Tsai, 24')

Summary

 We show that, under natural assumptions (independent increments, monotonicity, and shift commutativity)
the directed landscape is the **only** object with KPZ fixed point marginals i.e., DL is intrinsic to KPZ FP

- This gives a **framework** of upgrading KPZ fixed point convergence to directed landscape convergence
- Effectively, we give an alternative construction of the directed landscape
- Our arguments are **robust**, and can potentially be adapted to other settings (open boundary? periodic?)