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General FPP Model

Figure from Dauvergne and Virág, 2021.

First Passage Percolation: a canonical random metric.
Lattice Z2.
For each edge, assign i.i.d. (non-negative) weight.
Distance between any two vertices: smallest total weight.
Geodesic: path with minimum weight.

First order: limit shape
Next order: believed to be in the KPZ universality class.
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Exactly-Solvable Setting

A classical example:
directed Last Passage Percolation (LPP) with exponential weights.

u

v

ξ(v) ∼ Exp(1), i.i.d. ∀v ∈ Z2

Passage time: Lu,v := maxγ
∑

w∈γ ξ(w), over all directed paths.

Geodesic: path with maximum weight.
Exactly-solvable using algebraic combinatorics, representation theory,
or queueing.
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Exactly-Solvable Setting

A classical example:
directed Last Passage Percolation (LPP) with exponential weights.

u

v

L(0,0),(n,n) ∼ 4n (Rost, 1981).

2−4/3n−1/3(L(0,0),(n,n) − 4n) converges to the GUE Tracy-Widom
distribution, and geodesic has n2/3 fluctuation (Johansson, 2000).
Point to line profile (Borodin and Ferrari, 2008)

2−4/3n−1/3(L(0,0),(n−x(2n)2/3,n+x(2n)2/3) − 4n
)
⇒ A2(x)− x2.
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Exactly-Solvable Setting

A classical example:
directed Last Passage Percolation (LPP) with exponential weights.

u

v

Some other exactly-solvable settings:
LPP with geometric weights.
LPP through a Poisson field.
LPP through a sequence of Brownian motions.
Uniform random permutations.

Limit: the Directed Landscape; believed to be the limit of general FPP.
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Scaling Limit

The directed landscape is a random ‘directed metric’ on R2, constructed
in Dauvergne, Ortmann, and Virág, 2018.
For any (x , r), (y , t) with r < t , L(x , r ; y , t) is the passage time.

Figure from Dauvergne, Ortmann, and Virág, 2018.

Anti-triangle inequality

L(x , r ; y , t) ≥ L(x , r ; z, s) + L(z, s; y , t).
Composition:

L(x , r ; y , t) = max
z

L(x , r ; z, s) + L(z, s; y , t).
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For any (x , r), (y , t) with r < t , L(x , r ; y , t) is the passage time.
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Path weight: for a continuous function π : [r , t ] → R with π(r) = x and
π(t) = y ,

∥π∥L = inf
r=t0<t1<...<tk=t

k∑
i=1

L(π(ti−1), ti−1;π(ti), ti).

Geodesic: maximum weight ∥π∥L = L(x , r ; y , t).
Lingfu Zhang Princeton DL Fractal Dimension Apr 2022, UChicago



Convergence from Exponential LPP

Roughly,

2−4/3n−1/3
(

L(nr+25/3n2/3x,nr),(nt+25/3n2/3y,nt)−4n(t−r)−28/3n2/3(y−x)
)

→ L(x , r ; y , t).

n2/3

n2/3

n

Jointly for the geodesics: convergence after the transformation

(a,b) 7→ (2−5/3n−2/3(b − a),n−1b).
(Dauvergne and Virág, 2021, also for convergence of other exactly-
solvable models.)
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Some Basic Symmetries

Reflection by spatial/temporal axis:

(x , r ; y , t) 7→ L(y ,−t ; x ,−r), (x , r ; y , t) 7→ L(−x , r ,−y , t)

Shift:
(x , r ; y , t) 7→ L(x + z, r + s; y + z, t + s)

Affine shift:

(x , r ; y , t) 7→ L(x+cr , r ; y+ct , t)+(t−r)−1((x−y+c(r−t))2−(x−y)2)

(x , r)

(y , t)

(x + cr , r)

(y + ct , t)

Scaling:
(x , r ; y , t) 7→ wL(w−2x ,w−3r ;w−2y ,w−3t)

Source of fractal behaviours.
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Difference Profile
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Quadrangle Inequality and Coalescence

For each x , L(x ,0; x + ·,1) is a parabolic Airy2 process (A2(y)− y2).
What is the coupling structure for different x?

Such ‘directed metric’ behaves differently from a normal metric:
geodesics tend to coalesce

(x2, r)(x1, r)

(y2, t)(y1, t)

Coalesce if |x1 − x2| or |y1 − y2| is small enough.
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Quadrangle Inequality and Coalescence

Quadrangle inequality:
for x1 < x2, y1 < y2, and r < t ,

L(x1, r ; y1, t) + L(x2, r ; y2, t) ≥ L(x1, r ; y2, t) + L(x2, r ; y1, t).

(x2, r)(x1, r)

(y2, t)(y1, t)

(x2, r)(x1, r)

(y2, t)(y1, t)

Equality holds if and only if the geodesics from (x1, r) to (y1, r) and
from (x2, r) to (y2, r) coalesce.
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Difference Profile: Almost Everywhere Locally Constant

Take two points (e.g. (−1,0) and (1,0)), consider the difference profile
D(x , r) = L(1,0; x , r)− L(−1,0; x , r).

Simulation by Milind Hegde.

It is almost everywhere locally constant:

(−1, 0) (1, 0)

Lingfu Zhang Princeton DL Fractal Dimension Apr 2022, UChicago



Difference Profile: Non-constancy Set

Take two points (e.g. (−1,0) and (1,0)), consider the difference profile
D(x , r) = L(1,0; x , r)− L(−1,0; x , r).

Simulation by Milind Hegde.

Non-constancy: disjoint geodesics
(Bates, Ganguly, and Hammond, 2019)

(−1, 0) (1, 0)
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Non-constancy Set of the Difference Profile: Spatial Direction

In Basu, Ganguly, and Hammond, 2019, such difference profile in the
spatial direction (i.e. D(·,1)) was studied.

Simulation by Milind Hegde.

Monotone: D(x1,1) ≤ D(x2,1), since (by the quadrangle inequality)

L(1,0; x2,1) + L(−1,0; x1,1) ≥ L(1,0; x1,1) + L(−1,0; x2,1).

Can interpret D(·,1) as the CDF of a measure on R.

This measure is supported inside the non-constancy set in R× {1}.

Next: Hausdorff dimension of the spatial direction set.
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Non-constancy Set of the Difference Profile: Spatial Direction Fractal

Hausdorff dimension:
For any d ≥ 0 and metric space X , the d-dimensional Hausdorff mea-
sure of X is defined as

lim
δ↘0

inf
{∑

i

diam(Ui)
d : {Ui} is a countable cover of X

with 0 < diam(Ui) < δ
}
.

The Hausdorff dimension of X is

inf{d > 0 : the d-dimensional Hausdorff measure of X is zero }.

Lower bound:

If there is a non-zero measure supported inside X ⊂ R, and its CDF is
α-Hölder, then the Hausdorff dimension of X is at least α.

For spatial non-constancy set:
Both L(1,0; ·,1) and L(−1,0; ·,1) are parabolic Airy2, thus locally Brow-
nian
⇒ D(·,1) is (1/2 − δ)-Hölder.
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Non-constancy Set of the Difference Profile: Spatial Direction Fractal

Hausdorff dimension:
For any d ≥ 0 and metric space X , the d-dimensional Hausdorff mea-
sure of X is defined as

lim
δ↘0

inf
{∑

i

diam(Ui)
d : {Ui} is a countable cover of X

with 0 < diam(Ui) < δ
}
.

The Hausdorff dimension of X is

inf{d > 0 : the d-dimensional Hausdorff measure of X is zero }.

Upper bound:

Cover X by ϵ−1/2 sets, each with diameter < ϵ.

For spatial non-constancy set:
Given any interval, divide it into ϵ−1 small intervals, each with length
∼ ϵ; D(·,1) is non-constant on each with probability < ϵ1/2.
This is reduced to the disjointness of the geodesics from (−1,0) to
(x ,1) and from (1,0) to (x + ϵ,1).
(Upper bound of probability available from Hammond, 2019)
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Temporal Direction

Consider D(0, ·):

Simulations by Milind Hegde.

Lower bound: L is (1/3 − ϵ)-Hölder in the temporal direction, so the
non-constancy set in {0} × R+ has Hausdorff dimension ≥ 1/3.

Upper bound: D(0, ·) being non-constant in [t , t + ϵ] can be ‘reduced’
to the disjointness of the geodesics from (−1,0) to (−ϵ2/3, t) and from
(1,0) to (ϵ2/3, t).
The probability is ∼ ϵ1/3 by Hammond, 2019.
⇒ the non-constancy set in {0}×R+ has Hausdorff dimension ≤ 2/3.
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Temporal Direction: Hausdorff Dimension

Consider D(0, ·):

Simulations by Milind Hegde.

Why they do not match in the temporal direction?
Heuristic explanation: no monotonicity and cancellations.

Consider a random walk in a 2/3-dimensional fractal set:
will be (1/3 − ϵ)-Hölder.

Theorem
The non-constancy set of D(0, ·) has Hausdorff dimension 2/3.
The non-constancy set of D has Hausdorff dimension 5/3.
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Decomposition and Geodesic Local Time
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Level Set Decomposition

Simulation by Milind Hegde.

Consider
ϑℓ(t) = sup{x ∈ R : D(x , t) ≤ ℓ}.

Non-constancy set is the union of level sets.

Idea:
Construct local time for ϑℓ.
Consider the measure given by the average (over ℓ) of the local
times.
Prove Hölder property and non-degeneracy.
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An Analog of Brownian Local Time
Brownian local time:

lim
w→0

(2w)−1
∫ h

0
1[−w ≤ B(t) ≤ w ]dt .

Simulation from Kostrykin, Potthoff, and Schrader, 2012

Like the Brownian local time, we define the local time of ϑℓ:

κℓ([g,h]) = lim
w→0

(2w)−1
∫ h

g
1[−w ≤ ϑℓ(t) ≤ w ]dt .

Consider the measure κ =
∫
κℓdℓ. It is also supported inside the non-

constancy set! ⇒ aim at showing that it is 2/3-Hölder
Roughly κ([g,g + ϵ]) < ϵ1/3 supℓ κℓ([g,g + ϵ]).
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Level Set Decomposition: Comparison to Competition Interface

ϑℓ can be understood as a competition interface (two narrow wedge).

Also consider the competition interface from Brownian initial data:

LL(x , t) = sup
y≤0

L(y ,0; x , t) + B(y),

LR(x , t) = sup
y≥0

L(y ,0; x , t) + B(y),

ϑB(t) = sup{x ∈ R : LL(x , t)− LR(x , t) ≤ 0}.

Key property: ϑB d
= π(0,0)

(This is the semi-infinite geodesic, also constructed in e.g. Busani,
Seppäläinen, and Sorensen, 2022; Rahman and Virág, 2021).

Duality known for exponential LPP.
(See e.g. Ferrari, Martin, and Pimentel, 2009. Limit transition also
done in Rahman and Virág, 2021)
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Level Set Decomposition: Comparison to Competition Interface

Make B spiky, and assume coalescence of geodesics.

B

In an interval, ϑB is ϑℓ for some random ℓ.
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Geodesic Local Time

Local time of ϑB (equivalently, geodesic local time):

κB([g,h]) = lim
w→0

(2w)−1
∫ h

g
1[ϑB(t) ∈ [−w ,w ]]dt .

This is also ‘κℓ with random ℓ’.
Can show that:

κB([g,g + ϵ]) is at most in the order of ϵ1/3 with exponential tail.

(By multi-scale analysis of the semi-infinite geodesic, from Sarkar, Sly,
and Zhang, 2021)
⇒ supℓ κℓ([g,g + ϵ]) is at most in the order of ϵ1/3

⇒ κ([g,g + ϵ]) is at most in the order of ϵ2/3; i.e. κ is 2/3-Hölder
⇒ Non-constancy set of D(0, ·) has Hausdorff dimension ≥ 2/3.

An implication for the semi-infinite geodesic:

Theorem
The set {t > 0 : π(0,0)(t) = 0} has Hausdorff dimension 1/3.
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Thank you!
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